Proof of Theorem 133i

The theorem to be proved is
$2 \uparrow x \neq 0 \quad \rightarrow \quad 2 \uparrow \mathrm{~S} x \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(2 \uparrow x)=(0)] \quad \& \quad[(2 \uparrow(\mathrm{~S} x))=(0)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{lllll}
0: & \neg 2 \uparrow x=0 \quad \text { from } \quad \mathrm{H}: x \\
1: & 2 \uparrow(\mathrm{~S} x)=0 \quad \text { from } \quad \mathrm{H}: x \\
2: & \mathrm{S}(\mathrm{~S} 0)=2 \quad \text { from } \quad \underline{116} \\
3: & \mathrm{S} 0=1 \quad \text { from } \quad \underline{115} \\
4: & 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \text { from } \quad \underline{126} ; 2 ; x \\
5: & \neg 2 \cdot(2 \uparrow x)=0 \quad \vee \quad 2=0 \quad \vee \quad 2 \uparrow x=0 & \text { from } & \underline{132 ; 2 ; 2 \uparrow x} \\
6: & \neg \mathrm{S} 1=0 \quad \text { from } \quad \underline{3} ; 1
\end{array}
$$

Equality substitutions:

$7: \quad \neg 2 \uparrow(\mathrm{~S} x)=0 \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee 2 \cdot(2 \uparrow x)=0$
8: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S}(1)=2$
9: $\neg 2=0 \quad \vee \quad \neg \mathrm{~S} 1=2 \quad \vee \quad \mathrm{~S} 1=0$

Inferences:

10: $\quad \neg 2 \cdot(2 \uparrow x)=0 \quad \vee \quad 2=0 \quad$ by
$0: \neg 2 \uparrow x=0$
5: $\neg 2 \cdot(2 \uparrow x)=0 \quad \vee \quad 2=0 \quad \vee \quad 2 \uparrow x=0$
11: $\neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad 2 \cdot(2 \uparrow x)=0 \quad$ by
1: $2 \uparrow(\mathrm{~S} x)=0$
$7: \neg 2 \uparrow(\mathrm{~S} x)=0 \quad \vee \quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad 2 \cdot(2 \uparrow x)=0$
12: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2 \quad$ by
2: $\mathrm{S}(\mathrm{SO})=2$
8: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S} 1=2$

13: $\quad \mathrm{S} 1=2 \quad$ by
3: $\mathrm{S} 0=1$
12: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2$
14: $\quad 2 \cdot(2 \uparrow x)=0 \quad$ by
4: $2 \cdot(2 \uparrow x)=2 \uparrow(S x)$
11: $\neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \vee 2 \cdot(2 \uparrow x)=0$
15: $\quad \neg 2=0 \quad \vee \quad \neg \mathrm{~S} 1=2 \quad$ by
6: $\neg \mathrm{S} 1=0$
9: $\neg 2=0 \quad \vee \quad \neg \mathrm{~S} 1=2 \quad \vee \quad \mathrm{~S} 1=0$
16: $\neg 2=0 \quad$ by
13: $\mathrm{S} 1=2$
15: $\neg 2=0 \quad \vee \quad \neg \mathrm{~S} 1=2$
17: $2=0 \quad$ by
14: $2 \cdot(2 \uparrow x)=0$
10: $\neg 2 \cdot(2 \uparrow x)=0 \quad \vee \quad 2=0$
18: $Q E A$ by
16: $\neg 2=0$
17: $2=0$

