Proof of Theorem 133b

The theorem to be proved is
$2 \uparrow 0 \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(2 \uparrow 0)=(0)]]$

Special cases of the hypothesis and previous results:

0: $\quad 2 \uparrow 0=0 \quad$ from $\quad \mathrm{H}$
1: $\quad \mathrm{S} 0=1 \quad$ from $\quad \underline{115}$
2: $\quad 2 \uparrow 0=1 \quad$ from $\quad \underline{126} ; 2$
3: $\quad \neg \mathrm{S} 1=0 \quad$ from $\quad 3 ; 1$
Equality substitutions:

4: $\quad \neg 2 \uparrow 0=0 \quad \vee \quad \neg 2 \uparrow 0=1 \quad \vee \quad 0=1$
5: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 0=0 \quad \vee \quad \neg 1=0$
6: $\neg 1=0 \quad \vee \quad \mathrm{~S} 1=0 \quad \vee \quad \neg \mathrm{~S} 0=0$

Inferences:

7: $\quad \neg 2 \uparrow 0=1 \quad \vee \quad 1=0 \quad$ by
$0: 2 \uparrow 0=0$
4: $\neg 2 \uparrow 0=0 \quad \vee \quad \neg 2 \uparrow 0=1 \quad \vee \quad 1=0$
8: $\quad \mathrm{S} 0=0 \quad \vee \quad \neg 1=0 \quad$ by
1: $\mathrm{S} 0=1$
5: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 0=0 \quad \vee \quad \neg 1=0$
9: $\quad 1=0 \quad$ by
2: $2 \uparrow 0=1$
$7: \neg 2 \uparrow 0=1 \quad \vee \quad 1=0$
10: $\neg 1=0 \quad \vee \quad \neg \mathrm{~S} 0=0 \quad$ by
3: $\neg \mathrm{S} 1=0$
6: $\neg 1=0 \quad \vee \quad \mathrm{~S} 1=0 \quad \vee \quad \neg \mathrm{~S} 0=0$

11: $\quad \mathrm{S} 0=0 \quad$ by
9: $1=0$
8: $\mathrm{S} 0=0 \vee \neg 1=0$
12: $\neg \mathrm{S} 0=0 \quad$ by
9: $1=0$
10: $\neg 1=0 \quad \vee \quad \neg \mathrm{~S} 0=0$
13: $Q E A \quad$ by
11: $\mathrm{S} 0=0$
12: $\neg \mathrm{S} 0=0$

