Proof of Theorem 133b

The theorem to be proved is

$$2 \uparrow 0 \neq 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(2 \uparrow 0) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$2 \uparrow 0 = 0$$
 from H

1:
$$S0 = 1$$
 from 115

2:
$$2 \uparrow 0 = 1$$
 from 126;2

3:
$$\neg S1 = 0$$
 from 3;1

Equality substitutions:

4:
$$\neg 2 \uparrow 0 = 0 \lor \neg 2 \uparrow 0 = 1 \lor 0 = 1$$

5:
$$\neg S0 = 1 \lor S0 = 0 \lor \neg 1 = 0$$

6:
$$\neg 1 = 0 \lor S1 = 0 \lor \neg S0 = 0$$

Inferences:

7:
$$\neg 2 \uparrow 0 = 1 \lor 1 = 0$$
 by

$$0: 2 \uparrow 0 = 0$$

4:
$$\neg 2 \uparrow 0 = 0 \quad \lor \quad \neg 2 \uparrow 0 = 1 \quad \lor \quad 1 = 0$$

8:
$$S0 = 0 \lor \neg 1 = 0$$
 by

1:
$$S0 = 1$$

5:
$$\neg S0 = 1 \lor S0 = 0 \lor \neg 1 = 0$$

9:
$$1 = 0$$
 by

2:
$$2 \uparrow 0 = 1$$

7:
$$\neg 2 \uparrow 0 = 1 \lor 1 = 0$$

10:
$$\neg 1 = 0 \lor \neg S0 = 0$$
 by

3:
$$\neg S1 = 0$$

6:
$$\neg 1 = 0 \quad \lor \quad S1 = 0 \quad \lor \quad \neg S0 = 0$$

11:
$$S0 = 0$$
 by

9:
$$1 = 0$$

8:
$$S0 = 0 \quad \lor \quad \neg \ 1 = 0$$

12:
$$\neg S0 = 0$$
 by

9:
$$1 = 0$$

10:
$$\neg 1 = 0 \lor \neg S0 = 0$$

13:
$$QEA$$
 by

11:
$$S0 = 0$$

12:
$$\neg S0 = 0$$