Proof of Theorem 132

The theorem to be proved is
$x \cdot y=0 \quad \rightarrow \quad x=0 \quad \vee \quad y=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x \cdot y)=(0)] \quad \& \quad[\neg(x)=(0)] \quad \& \quad[\neg(y)=(0)]]$

Special cases of the hypothesis and previous results:

$0: x \cdot y=0 \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad \neg 0=x \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad \neg 0=y \quad$ from $\quad \mathrm{H}: x: y$
3: $0=y \quad \vee \quad \mathrm{~S}(\mathrm{P} y)=y \quad$ from $\quad \underline{22} ; y$
4: $\quad x+(x \cdot(\mathrm{P} y))=x \cdot(\mathrm{~S}(\mathrm{P} y)) \quad$ from $\quad \underline{99} ; x ; \mathrm{P} y$
5: $\quad \neg x+(x \cdot(\mathrm{P} y))=0 \quad \vee \quad 0=x \quad$ from $\quad 15 ; x ; x \cdot(\mathrm{P} y)$

Equality substitutions:

6: $\neg x \cdot y=0 \quad \vee \quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=0$
7: $\neg \mathrm{S}(\mathrm{P} y)=y \quad \vee \quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot(\mathrm{~S}(\mathrm{P} y)) \quad \vee \quad x+(x \cdot(\mathrm{P} y))=x \cdot(y)$

Inferences:

8: $\quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=0 \quad$ by
0: $x \cdot y=0$
6: $\neg x \cdot y=0 \quad \vee \quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=0$
9: $\neg x+(x \cdot(\mathrm{P} y))=0 \quad$ by
1: $\neg 0=x$
5: $\neg x+(x \cdot(\mathrm{P} y))=0 \quad \vee \quad 0=x$
10: $\quad \mathrm{S}(\mathrm{P} y)=y \quad$ by
2: $\neg 0=y$
3: $0=y \quad \vee \quad \mathrm{~S}(\mathrm{P} y)=y$

11: $\neg \mathrm{S}(\mathrm{P} y)=y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=x \cdot y \quad$ by
4: $x+(x \cdot(\mathrm{P} y))=x \cdot(\mathrm{~S}(\mathrm{P} y))$
$7: \neg \mathrm{S}(\mathrm{P} y)=y \quad \vee \quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot(\mathrm{~S}(\mathrm{P} y)) \quad \vee \quad x+(x \cdot(\mathrm{P} y))=x \cdot y$
12: $\quad \neg x+(x \cdot(\mathrm{P} y))=x \cdot y \quad$ by
9: $\neg x+(x \cdot(\mathrm{P} y))=0$
8: $\neg x+(x \cdot(\mathrm{P} y))=x \cdot y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=0$
13: $\quad x+(x \cdot(\mathrm{P} y))=x \cdot y \quad$ by
10: $\mathrm{S}(\mathrm{P} y)=y$
11: $\neg \mathrm{S}(\mathrm{P} y)=y \quad \vee \quad x+(x \cdot(\mathrm{P} y))=x \cdot y$
14: $Q E A \quad$ by
12: $\neg x+(x \cdot(\mathrm{P} y))=x \cdot y$
13: $x+(x \cdot(\mathrm{P} y))=x \cdot y$

