Proof of Theorem 132

The theorem to be proved is

$$x \cdot y = 0 \quad \rightarrow \quad x = 0 \quad \lor \quad y = 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x \cdot y) = (0)] \& [\neg (x) = (0)] \& [\neg (y) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$x \cdot y = 0$$
 from H:x:y

1:
$$\neg 0 = x$$
 from H:x:y

2:
$$\neg 0 = y$$
 from H:x:y

3:
$$0 = y \lor S(Py) = y$$
 from $22;y$

4:
$$x + (x \cdot (Py)) = x \cdot (S(Py))$$
 from 99; x ; Py

5:
$$\neg x + (x \cdot (Py)) = 0 \quad \lor \quad 0 = x$$
 from $\underline{15}; x; x \cdot (Py)$

Equality substitutions:

6:
$$\neg x \cdot y = 0 \quad \lor \quad \neg x + (x \cdot (Py)) = x \cdot y \quad \lor \quad x + (x \cdot (Py)) = 0$$

7:
$$\neg S(Py) = y \lor \neg x + (x \cdot (Py)) = x \cdot (S(Py)) \lor x + (x \cdot (Py)) = x \cdot (y)$$

Inferences:

8:
$$\neg x + (x \cdot (Py)) = x \cdot y \quad \lor \quad x + (x \cdot (Py)) = 0$$
 by

$$0: x \cdot y = 0$$

6:
$$\neg x \cdot y = 0 \quad \lor \quad \neg x + (x \cdot (Py)) = x \cdot y \quad \lor \quad x + (x \cdot (Py)) = 0$$

9:
$$\neg x + (x \cdot (Py)) = 0$$
 by

1:
$$\neg 0 = x$$

5:
$$\neg x + (x \cdot (Py)) = 0 \lor 0 = x$$

10:
$$S(Py) = y$$
 by

2:
$$\neg 0 = y$$

3:
$$0 = y \quad \lor \quad S(Py) = y$$

11:
$$\neg S(Py) = y \lor x + (x \cdot (Py)) = x \cdot y$$
 by
4: $x + (x \cdot (Py)) = x \cdot (S(Py))$
7: $\neg S(Py) = y \lor \neg x + (x \cdot (Py)) = x \cdot (S(Py)) \lor x + (x \cdot (Py)) = x \cdot y$

12:
$$\neg x + (x \cdot (Py)) = x \cdot y$$
 by
9: $\neg x + (x \cdot (Py)) = 0$
8: $\neg x + (x \cdot (Py)) = x \cdot y$ $\lor x + (x \cdot (Py)) = 0$

13:
$$x + (x \cdot (Py)) = x \cdot y$$
 by
10: $S(Py) = y$
11: $\neg S(Py) = y \lor x + (x \cdot (Py)) = x \cdot y$

14:
$$QEA$$
 by
12: $\neg x + (x \cdot (Py)) = x \cdot y$
13: $x + (x \cdot (Py)) = x \cdot y$