Proof of Theorem 131

The theorem to be proved is

 $2 \uparrow x$ is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[\neg (2 \uparrow x) \text{ is a power of two}]$

Special cases of the hypothesis and previous results:

- 0: $\neg 2 \uparrow x$ is a power of two from H:x
- 1: $2 \uparrow x$ is a power of two $\lor \neg x \le 2 \uparrow x \lor \neg 2 \uparrow x = 2 \uparrow x$ from $\underline{129} \leftarrow ; 2 \uparrow x ; x$
- 2: $x \le 2 \uparrow x$ from 128; x
- 3: $2 \uparrow x = 2 \uparrow x$ from $5; 2 \uparrow x$

Inferences:

- 4: $\neg x \leq 2 \uparrow x \lor \neg 2 \uparrow x = 2 \uparrow x$ by
 - 0: $\neg 2 \uparrow x$ is a power of two
 - 1: $2 \uparrow x$ is a power of two $\lor \neg x \le 2 \uparrow x \lor \neg 2 \uparrow x = 2 \uparrow x$
- 5: $\neg 2 \uparrow x = 2 \uparrow x$ by
 - $2: x \leq 2 \uparrow x$
 - 4: $\neg x \leq 2 \uparrow x \quad \lor \quad \neg 2 \uparrow x = 2 \uparrow x$
- 6: QEA by
 - 3: $2 \uparrow x = 2 \uparrow x$
 - 5: $\neg 2 \uparrow x = 2 \uparrow x$