Proof of Theorem 130

The theorem to be proved is

1 is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[\neg (1) \text{ is a power of two}]$

Special cases of the hypothesis and previous results:

- $0: \neg 1 \text{ is a power of two} \qquad \text{from} \quad \mathbf{H}$
- 1: 1 is a power of two $\vee \neg 0 \le 1 \quad \vee \neg 2 \uparrow 0 = 1$ from $129^{<-};1;0$
- 2: $0 \le 2 \uparrow 0$ from 128;0
- 3: $2 \uparrow 0 = 1$ from <u>126</u>;2

Equality substitutions:

4:
$$\neg 2 \uparrow 0 = 1 \lor \neg 0 \leq 2 \uparrow 0 \lor 0 \leq 1$$

Inferences:

- 5: $\neg 0 \le 1 \quad \lor \quad \neg 2 \uparrow 0 = 1$ by
 - $0: \neg 1$ is a power of two
 - 1: 1 is a power of two $\lor \neg 0 \le 1 \lor \neg 2 \uparrow 0 = 1$
- 6: $\neg 2 \uparrow 0 = 1 \lor 0 \le 1$ by
 - $2: 0 \leq 2 \uparrow 0$
 - 4: $\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 0 \leq 2 \uparrow 0 \quad \lor \quad 0 \leq 1$
- 7: $\neg 0 \le 1$ by
 - $3: 2 \uparrow 0 = 1$
 - 5: $\neg 0 \le 1 \quad \lor \quad \neg 2 \uparrow 0 = 1$
- 8: $0 \le 1$ by
 - $3: 2 \uparrow 0 = 1$
 - 6: $\neg 2 \uparrow 0 = 1 \lor 0 \le 1$
- 9: QEA by
 - 7: $\neg 0 \le 1$
 - 8: $0 \le 1$