Proof of Theorem 130

The theorem to be proved is
1 is a power of two
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(1)$ is a power of two $]]$

Special cases of the hypothesis and previous results:

0 : $\neg 1$ is a power of two from H
1: 1 is a power of two $\vee \neg 0 \leq 1 \quad \vee \neg 2 \uparrow 0=1 \quad$ from $\quad 129^{\leftarrow} ; 1 ; 0$
2: $\quad 0 \leq 2 \uparrow 0 \quad$ from $\quad 128 ; 0$
3: $2 \uparrow 0=1 \quad$ from $\quad 126 ; 2$
Equality substitutions:

4: $\neg 2 \uparrow 0=1 \quad \vee \neg 0 \leq 2 \uparrow 0 \quad \vee \quad 0 \leq 1$

Inferences:

5: $\neg 0 \leq 1 \quad \vee \quad \neg 2 \uparrow 0=1 \quad$ by
$0: \neg 1$ is a power of two
1: 1 is a power of two $\vee \neg 0 \leq 1 \vee \neg 2 \uparrow 0=1$
6: $\neg 2 \uparrow 0=1 \quad \vee \quad 0 \leq 1 \quad$ by
$2: 0 \leq 2 \uparrow 0$
4: $\neg 2 \uparrow 0=1 \quad \vee \quad \neg 0 \leq 2 \uparrow 0 \quad \vee \quad 0 \leq 1$
7: $\neg 0 \leq 1 \quad$ by
$3: 2 \uparrow 0=1$
$5: \neg 0 \leq 1 \quad \vee \quad \neg 2 \uparrow 0=1$
8: $0 \leq 1 \quad$ by
$3: 2 \uparrow 0=1$
6: $\neg 2 \uparrow 0=1 \quad \vee \quad 0 \leq 1$
9: $Q E A$ by
7: $\neg 0 \leq 1$
8: $0 \leq 1$

