Proof of Theorem 128

The theorem to be proved is
$x \leq 2 \uparrow x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(x) \leq(2 \uparrow x)]]$

Special cases of the hypothesis and previous results:

0: $\neg x \leq 2 \uparrow x \quad$ from $\quad \mathrm{H}: x$
1: $x<2 \uparrow x \quad$ from $127 ; x$
2: $\neg x<2 \uparrow x \quad \vee \quad x \leq 2 \uparrow x \quad$ from $\quad \underline{56}^{\rightarrow} ; x ; 2 \uparrow x$

Inferences:

3: $\neg x<2 \uparrow x \quad$ by
$0: \neg x \leq 2 \uparrow x$
$2: \neg x<2 \uparrow x \quad \vee \quad x \leq 2 \uparrow x$
4: $Q E A$ by
1: $x<2 \uparrow x$
3: $\neg x<2 \uparrow x$

