Proof of Theorem 128

The theorem to be proved is

$$x \leq 2 \uparrow x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x) \le (2 \uparrow x)]]$$

Special cases of the hypothesis and previous results:

- 0: $\neg x \le 2 \uparrow x$ from H:x
- 1: $x < 2 \uparrow x$ from 127; x
- 2: $\neg x < 2 \uparrow x \lor x \le 2 \uparrow x$ from $\underline{56}^{\Rightarrow}; x; 2 \uparrow x$

Inferences:

- 3: $\neg x < 2 \uparrow x$ by
 - $0: \neg x \leq 2 \uparrow x$
 - 2: $\neg x < 2 \uparrow x \lor x \le 2 \uparrow x$
- 4: QEA by
 - 1: $x < 2 \uparrow x$
 - $3: \neg x < 2 \uparrow x$