Proof of Theorem 127i

The theorem to be proved is
$x<2 \uparrow x \quad \rightarrow \quad \mathrm{~S} x<2 \uparrow \mathrm{~S} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)<(2 \uparrow x)] \quad \& \quad[\neg(\mathrm{~S} x)<(2 \uparrow(\mathrm{~S} x))]]$

Special cases of the hypothesis and previous results:
$0: \quad x<2 \uparrow x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \mathrm{S} x<2 \uparrow(\mathrm{~S} x) \quad$ from $\mathrm{H}: x$
2: $\quad 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad$ from $\quad 126 ; 2 ; x$
3: $\neg x<2 \uparrow x \quad \vee \quad \mathrm{~S} x<2 \cdot(2 \uparrow x) \quad$ from $\quad 124 ; x ; 2 \uparrow x$

Equality substitutions:

4: $\neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \vee \quad \neg \mathrm{S} x<2 \cdot(2 \uparrow x) \vee \mathrm{S} x<2 \uparrow(\mathrm{~S} x)$

Inferences:

5: $\quad \mathrm{S} x<2 \cdot(2 \uparrow x) \quad$ by
$0: x<2 \uparrow x$
3: $\neg x<2 \uparrow x \quad \vee \quad \mathrm{~S} x<2 \cdot(2 \uparrow x)$
6: $\quad \neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad \neg \mathrm{S} x<2 \cdot(2 \uparrow x) \quad$ by
1: $\neg \mathrm{S} x<2 \uparrow(\mathrm{~S} x)$
4: $\neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad \neg \mathrm{S} x<2 \cdot(2 \uparrow x) \quad \vee \quad \mathrm{S} x<2 \uparrow(\mathrm{~S} x)$
7: $\neg \mathrm{S} x<2 \cdot(2 \uparrow x) \quad$ by
2: $2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x)$
6: $\neg 2 \cdot(2 \uparrow x)=2 \uparrow(\mathrm{~S} x) \quad \vee \quad \neg \mathrm{S} x<2 \cdot(2 \uparrow x)$
8: $Q E A$ by
5: $\mathrm{S} x<2 \cdot(2 \uparrow x)$
$7: \neg \mathrm{S} x<2 \cdot(2 \uparrow x)$

