Proof of Theorem 127b

The theorem to be proved is
$0<2 \uparrow 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(0)<(2 \uparrow 0)]]$

Special cases of the hypothesis and previous results:
0: $\neg 0<2 \uparrow 0 \quad$ from $\quad \mathrm{H}$
1: $\quad \mathrm{S} 0=1 \quad$ from $\quad 115$
2: $\quad 2 \uparrow 0=1 \quad$ from $\quad 126 ; 2$
3: $0<\mathrm{S} 0 \quad$ from $\quad \underline{125 ; 0}$

Equality substitutions:

4: $\neg \mathrm{S} 0=1 \quad \vee \neg 0<\mathrm{S} 0 \quad \vee \quad 0<1$
5: $\neg 2 \uparrow 0=1 \quad \vee \quad 0<2 \uparrow 0 \vee \neg 0<1$

Inferences:

6: $\quad \neg 2 \uparrow 0=1 \quad \vee \neg 0<1 \quad$ by
$0: \neg 0<2 \uparrow 0$
5: $\neg 2 \uparrow 0=1 \quad \vee \quad 0<2 \uparrow 0 \quad \vee \quad \neg 0<1$
7: $\neg 0<\mathrm{S} 0 \vee 0<1$ by
1: $\mathrm{S} 0=1$
4: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg 0<\mathrm{S} 0 \quad \vee \quad 0<1$
8: $\neg 0<1 \quad$ by
$2: 2 \uparrow 0=1$
6: $\neg 2 \uparrow 0=1 \quad \vee \quad \neg 0<1$
9: $0<1 \quad$ by
3: $0<\mathrm{S} 0$
7: $\neg 0<\mathrm{S} 0 \quad \vee \quad 0<1$
10: $Q E A$ by
8: $\neg 0<1$
9: $0<1$

