Proof of Theorem 127b

The theorem to be proved is

$$0 < 2 \uparrow 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (0) < (2 \uparrow 0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 < 2 \uparrow 0$$
 from H

1:
$$S0 = 1$$
 from 115

2:
$$2 \uparrow 0 = 1$$
 from 126;2

3:
$$0 < S0$$
 from $125;0$

Equality substitutions:

4:
$$\neg S0 = 1 \lor \neg 0 < S0 \lor 0 < 1$$

5:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad 0 < 2 \uparrow 0 \quad \lor \quad \neg 0 < 1$$

Inferences:

6:
$$\neg 2 \uparrow 0 = 1 \lor \neg 0 < 1$$
 by

$$0: \neg 0 < 2 \uparrow 0$$

5:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad 0 < 2 \uparrow 0 \quad \lor \quad \neg 0 < 1$$

7:
$$\neg 0 < S0 \lor 0 < 1$$
 by

1:
$$S0 = 1$$

4:
$$\neg S0 = 1 \lor \neg 0 < S0 \lor 0 < 1$$

8:
$$\neg 0 < 1$$
 by

2:
$$2 \uparrow 0 = 1$$

6:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 0 < 1$$

9:
$$0 < 1$$
 by

7:
$$\neg 0 < S0 \lor 0 < 1$$

10:
$$QEA$$
 by

8:
$$\neg 0 < 1$$

9:
$$0 < 1$$