Proof of Theorem 125

The theorem to be proved is

 $x < \mathbf{S} x$

Suppose the theorem does not hold. Then, with the variables held fixed,

 $(\mathbf{H}) \quad [[\neg (x) < (\mathbf{S}x)]]$

Special cases of the hypothesis and previous results:

0: $\neg x < Sx$ from H:x 1: $\neg Sx \le x$ from <u>59</u>;x 2: $Sx \le x \lor x < Sx$ from <u>79</u>;Sx;x

Inferences:

- 3: $Sx \le x$ by 0: $\neg x < Sx$ 2: $Sx \le x \lor x < Sx$
- 4: QEA by 1: $\neg Sx \le x$ 3: $Sx \le x$