Proof of Theorem 123

The theorem to be proved is
$x<y \quad \rightarrow \quad y \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $[[(x)<(y)] \quad \& \quad[(y)=(0)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llll}
0: & x<y & \text { from } \quad \mathrm{H}: x: y \\
1: & 0=y & \text { from } \mathrm{H}: x: y \\
2: & \neg x<y & \vee & x \leq y
\end{array} \quad \text { from } \quad \underline{56} \rightarrow ; x ; y
$$

Equality substitutions:

5: $\neg 0=y \quad \vee \quad x \leq 0 \quad \vee \quad \neg x \leq y$
6: $\neg 0=y \quad \vee \quad \neg 0=x \quad \vee \quad y=x$

Inferences:

7: $x \leq y \quad$ by
0: $x<y$
2: $\neg x<y \quad \vee \quad x \leq y$
8: $\neg y=x \quad$ by
0: $x<y$
3: $\neg x<y \quad \vee \quad \neg y=x$
9: $x \leq 0 \quad \vee \quad \neg x \leq y \quad$ by
1: $0=y$
5: $\neg 0=y \quad \vee \quad x \leq 0 \quad \vee \quad \neg x \leq y$
10: $\quad \neg 0=x \quad \vee \quad y=x \quad$ by
1: $0=y$
6: $\neg 0=y \quad \vee \quad \neg 0=x \quad \vee \quad y=x$

11: $x \leq 0 \quad$ by
7: $x \leq y$
9: $x \leq 0 \vee \neg x \leq y$
12: $\neg 0=x \quad$ by
8: $\neg y=x$
10: $\neg 0=x \quad \vee \quad y=x$
13: $0=x \quad$ by
11: $x \leq 0$
4: $\neg x \leq 0 \quad \vee \quad 0=x$
14: $Q E A \quad$ by
12: $\neg 0=x$
13: $0=x$

