Proof of Theorem 123

The theorem to be proved is

 $x < y \rightarrow y \neq 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) [[(x) < (y)] & [(y) = (0)]]

Special cases of the hypothesis and previous results:

0:	x < y	from $H:x:y$	
1:	0 = y	from H:x:y	
2:	$\neg \; x < y$	$\lor x \leq y$	from $\underline{56}^{\rightarrow};x;y$
3:	$\neg \; x < y$	$\lor \neg \; y = x$	from $\underline{56}^{\rightarrow};x;y$
4:	$\neg x \leq 0$	$\lor 0 = x$	from $\underline{57};x$

Equality substitutions:

5:
$$\neg 0 = y \lor x \le 0 \lor \neg x \le y$$

6: $\neg 0 = y \lor \neg 0 = x \lor y = x$

Inferences:

7:
$$x \leq y$$
 by
0: $x < y$
2: $\neg x < y \lor x \leq y$
8: $\neg y = x$ by
0: $x < y$
3: $\neg x < y \lor \neg y = x$
9: $x \leq 0 \lor \neg x \leq y$ by
1: $0 = y$
5: $\neg 0 = y \lor x \leq 0 \lor \neg x \leq y$
10: $\neg 0 = x \lor y = x$ by
1: $0 = y$
6: $\neg 0 = y \lor \neg 0 = x \lor y = x$

11: $x \le 0$ by 7: $x \le y$ 9: $x \le 0 \lor \neg x \le y$ 12: $\neg 0 = x$ by 8: $\neg y = x$ 10: $\neg 0 = x \lor y = x$ 13: 0 = x by 11: $x \le 0$ 4: $\neg x \le 0 \lor 0 = x$ 14: QEA by 12: $\neg 0 = x$

13: 0 = x

2