Proof of Theorem 121

The theorem to be proved is

$$y \neq 0 \quad \rightarrow \quad x < x + y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (y) = (0)]$$
 & $[\neg (x) < (x+y)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 = y$$
 from H: $y:x$

1:
$$\neg x < x + y$$
 from H:y:x

2:
$$x \le x + y$$
 from $71;x;y$

3:
$$x < x + y \quad \forall \quad \neg \ x \le x + y \quad \forall \quad x + y = x \quad \text{from} \quad \underline{56}^{<-}; x; x + y$$

4:
$$\neg x + 0 = x + y \quad \lor \quad 0 = y$$
 from 120; x ;0; y

5:
$$x + 0 = x$$
 from $12;x$

Equality substitutions:

6:
$$\neg x + y = x \lor x + 0 = x + y \lor \neg x + 0 = x$$

Inferences:

7:
$$\neg x + 0 = x + y$$
 by

$$0: \neg 0 = y$$

4:
$$\neg x + 0 = x + y \quad \lor \quad 0 = y$$

8:
$$\neg x \le x + y \lor x + y = x$$
 by

1:
$$\neg x < x + y$$

3:
$$x < x + y \quad \lor \quad \neg x \le x + y \quad \lor \quad x + y = x$$

9:
$$x + y = x$$
 by

2:
$$x \le x + y$$

8:
$$\neg x \le x + y \quad \lor \quad x + y = x$$

10:
$$\neg x + y = x \lor x + 0 = x + y$$
 by

5:
$$x + 0 = x$$

6:
$$\neg x + y = x \quad \lor \quad x + 0 = x + y \quad \lor \quad \neg x + 0 = x$$

- 11: $\neg x + y = x$ by
 - $7: \neg x + 0 = x + y$
 - 10: $\neg x + y = x \quad \lor \quad \frac{x + 0}{x + y}$
- 12: QEA by
 - 9: x + y = x
 - $11: \neg x + y = x$