## Proof of Theorem 121

The theorem to be proved is
$y \neq 0 \quad \rightarrow \quad x<x+y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(y)=(0)] \quad \& \quad[\neg(x)<(x+y)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{lllll}
0: & \neg 0=y \quad \text { from } \quad \mathrm{H}: y: x \\
1: & \neg x<x+y \quad \text { from } \quad \mathrm{H}: y: x \\
2: & x \leq x+y \quad \text { from } \quad \underline{71 ; x ; y} \\
3: & x<x+y \quad \vee \quad \neg x \leq x+y \quad \vee \quad x+y=x \quad \text { from } \quad \underline{56}{ }^{<} ; x ; x+y \\
4: & \neg x+0=x+y \quad \vee \quad 0=y \quad \text { from } \quad \underline{120} ; x ; 0 ; y \\
5: & x+0=x \quad \text { from } \quad \underline{12 ; x}
\end{array}
$$

## Equality substitutions:

6: $\neg x+y=x \quad \vee \quad x+0=x+y \quad \vee \quad \neg x+0=x$

## Inferences:

7: $\quad \neg x+0=x+y \quad$ by
0 : $\neg 0=y$
4: $\neg x+0=x+y \quad \vee \quad 0=y$
8: $\neg x \leq x+y \quad \vee \quad x+y=x \quad$ by
1: $\neg x<x+y$
3: $x<x+y \vee \neg x \leq x+y \vee x+y=x$
9: $\quad x+y=x \quad$ by
2: $x \leq x+y$
8: $\neg x \leq x+y \vee \quad x+y=x$
10: $\neg x+y=x \quad \vee \quad x+0=x+y \quad$ by
5: $x+0=x$
6: $\neg x+y=x \quad \vee \quad x+0=x+y \quad \vee \quad \neg x+0=x$

11: $\neg x+y=x \quad$ by
7: $\neg x+0=x+y$
10: $\neg x+y=x \quad \vee \quad x+0=x+y$
12: $Q E A$ by
9: $x+y=x$
11: $\neg x+y=x$

