Proof of Theorem 119i

The theorem to be proved is

$$[y+x=z+x \rightarrow y=z] \rightarrow [y+Sx=z+Sx \rightarrow y=z]$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (y+x) = (z+x) \lor (y) = (z)] \& [(y+(Sx)) = (z+(Sx))] \& [\neg (y) = (z)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg z + x = y + x \lor z = y$$
 from H:y:x:z

1:
$$z + (Sx) = y + (Sx)$$
 from H:y:x:z

2:
$$\neg z = y$$
 from H: $y:x:z$

3:
$$S(y+x) = y + (Sx)$$
 from 12; y ; x

4:
$$S(z+x) = z + (Sx)$$
 from 12; z ; x

5:
$$\neg S(z+x) = S(y+x) \lor z+x=y+x$$
 from $4;y+x;z+x$

Equality substitutions:

6:
$$\neg z + (Sx) = y + (Sx) \lor S(y+x) = z + (Sx) \lor \neg S(y+x) = y + (Sx)$$

7:
$$\neg S(z+x) = z + (Sx) \lor S(z+x) = S(y+x) \lor \neg z + (Sx) = S(y+x)$$

Inferences:

8:
$$S(y+x) = z + (Sx) \quad \lor \quad \neg S(y+x) = y + (Sx)$$
 by

1:
$$z + (Sx) = y + (Sx)$$

6:
$$\neg z + (Sx) = y + (Sx) \lor S(y+x) = z + (Sx) \lor \neg S(y+x) = y + (Sx)$$

9:
$$\neg z + x = y + x$$
 by

$$2: \neg z = y$$

$$0: \neg z + x = y + x \lor z = y$$

10:
$$S(y+x) = z + (Sx)$$
 by

3:
$$S(y+x) = y + (Sx)$$

8:
$$S(y+x) = z + (Sx) \quad \lor \quad \neg S(y+x) = y + (Sx)$$

11:
$$S(z+x) = S(y+x) \quad \forall \quad \neg S(y+x) = z + (Sx)$$
 by

4:
$$S(z + x) = z + (Sx)$$

7:
$$\neg S(z+x) = z + (Sx) \lor S(z+x) = S(y+x) \lor \neg S(y+x) = z + (Sx)$$

12:
$$\neg S(z+x) = S(y+x)$$
 by

9:
$$\neg z + x = y + x$$

5:
$$\neg S(z+x) = S(y+x) \lor z+x = y+x$$

13:
$$S(z + x) = S(y + x)$$
 by

10:
$$S(y+x) = z + (Sx)$$

11:
$$S(z+x) = S(y+x) \quad \lor \quad \neg S(y+x) = z + (Sx)$$

14:
$$QEA$$
 by

12:
$$\neg S(z+x) = S(y+x)$$

13:
$$S(z + x) = S(y + x)$$