Proof of Theorem 119b

The theorem to be proved is
$y+0=z+0 \quad \rightarrow \quad y=z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(y+0)=(z+0)] \quad \& \quad[\neg(y)=(z)]]$

Special cases of the hypothesis and previous results:

0: $\quad z+0=y+0 \quad$ from $\mathrm{H}: y: z$
1: $\neg z=y \quad$ from $\quad \mathrm{H}: y: z$
2: $y+0=y \quad$ from $\underline{12} ; y$
3: $z+0=z \quad$ from $\quad \underline{12} ; z$

Equality substitutions:

4: $\neg z+0=y+0 \quad \vee \quad z+0=y \quad \vee \quad \neg y+0=y$
5: $\neg z+0=z \quad \vee \quad \neg z+0=y \quad \vee \quad z=y$

Inferences:

6: $\quad z+0=y \quad \vee \quad \neg y+0=y \quad$ by
$0: z+0=y+0$
4: $\neg z+0=y+0 \quad \vee \quad z+0=y \quad \vee \quad \neg y+0=y$
7: $\neg z+0=z \quad \vee \quad \neg z+0=y \quad$ by
1: $\neg z=y$
5: $\neg z+0=z \vee \neg z+0=y \quad \vee \quad z=y$
8: $z+0=y \quad$ by
2: $y+0=y$
6: $z+0=y \quad \vee \quad \neg y+0=y$
9: $\neg z+0=y \quad$ by
3: $z+0=z$
7: $\neg z+0=z \vee \neg z+0=y$
10: $Q E A \quad$ by
8: $z+0=y$
9: $\neg z+0=y$

