Proof of Theorem 119b

The theorem to be proved is

 $y + 0 = z + 0 \quad \rightarrow \quad y = z$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) [[(y+0) = (z+0)] & $[\neg (y) = (z)]]$

Special cases of the hypothesis and previous results:

0: z + 0 = y + 0 from H:y:z 1: $\neg z = y$ from H:y:z 2: y + 0 = y from <u>12</u>;y 3: z + 0 = z from <u>12</u>;z

Equality substitutions:

4:
$$\neg z + 0 = y + 0 \lor z + 0 = y \lor \neg y + 0 = y$$

5: $\neg z + 0 = z \lor \neg z + 0 = y \lor z = y$

Inferences:

6:
$$z + 0 = y \lor \neg y + 0 = y$$
 by
0: $z + 0 = y + 0$
4: $\neg z + 0 = y + 0 \lor z + 0 = y \lor \neg y + 0 = y$
7: $\neg z + 0 = z \lor \neg z + 0 = y$ by
1: $\neg z = y$
5: $\neg z + 0 = z \lor \neg z + 0 = y \lor z = y$
8: $z + 0 = y$ by
2: $y + 0 = y$
6: $z + 0 = y \lor \neg y + 0 = y$
9: $\neg z + 0 = y$ by
3: $z + 0 = z$
7: $\neg z + 0 = z \lor \neg z + 0 = y$
10: QEA by

10. Q D T = 5y8: z + 0 = y9: $\neg z + 0 = y$