Proof of Theorem 118

The theorem to be proved is

 $2 \cdot x = x + x$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $[[\neg (2 \cdot x) = (x + x)]]$

Special cases of the hypothesis and previous results:

0: $\neg 2 \cdot x = x + x$ from H:x 1: S(S0) = 2 from <u>116</u> 2: S0 = 1 from <u>115</u> 3: $(1 \cdot x) + x = (S1) \cdot x$ from <u>104</u>;1;x 4: $1 \cdot x = x$ from <u>117</u>;x

Equality substitutions:

5:
$$\neg S0 = 1 \lor \neg S(S0) = 2 \lor S(1) = 2$$

6: $\neg 1 \cdot x = x \lor \neg (1 \cdot x) + x = 2 \cdot x \lor (x) + x = 2 \cdot x$
7: $\neg S1 = 2 \lor \neg (1 \cdot x) + x = (S1) \cdot x \lor (1 \cdot x) + x = (2) \cdot x$

Inferences:

8: $\neg 1 \cdot x = x \lor \neg (1 \cdot x) + x = 2 \cdot x$ by 0: $\neg 2 \cdot x = x + x$ 6: $\neg 1 \cdot x = x \lor \neg (1 \cdot x) + x = 2 \cdot x \lor 2 \cdot x = x + x$ 9: $\neg S0 = 1 \lor S1 = 2$ by 1: S(S0) = 25: $\neg S0 = 1 \lor \neg S(S0) = 2 \lor S1 = 2$ 10: S1 = 2 by 2: S0 = 19: $\neg S0 = 1 \lor S1 = 2$

- 11: $\neg S1 = 2 \lor (1 \cdot x) + x = 2 \cdot x$ by 3: $(1 \cdot x) + x = (S1) \cdot x$ 7: $\neg S1 = 2 \lor \neg (1 \cdot x) + x = (S1) \cdot x \lor (1 \cdot x) + x = 2 \cdot x$
- 12: $\neg (1 \cdot x) + x = 2 \cdot x$ by 4: $1 \cdot x = x$ 8: $\neg 1 \cdot x = x \lor \neg (1 \cdot x) + x = 2 \cdot x$
- 13: $(1 \cdot x) + x = 2 \cdot x$ by 10: S1 = 211: $\neg S1 = 2 \lor (1 \cdot x) + x = 2 \cdot x$
- 14: QEA by 12: $\neg (1 \cdot x) + x = 2 \cdot x$ 13: $(1 \cdot x) + x = 2 \cdot x$