Proof of Theorem 118

The theorem to be proved is
$2 \cdot x=x+x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(2 \cdot x)=(x+x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg 2 \cdot x=x+x \quad$ from $\quad \mathrm{H}: x$
1: $\quad \mathrm{S}(\mathrm{S} 0)=2 \quad$ from $\quad 116$
2: $\mathrm{S} 0=1 \quad$ from $\quad 115$
3: $\quad(1 \cdot x)+x=(\mathrm{S} 1) \cdot x \quad$ from $\quad 104 ; 1 ; x$
4: $1 \cdot x=x \quad$ from $\quad \underline{117} ; x$

Equality substitutions:

5: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S}(1)=2$
6: $\quad \neg 1 \cdot x=x \quad \vee \quad \neg(1 \cdot x)+x=2 \cdot x \quad \vee \quad(x)+x=2 \cdot x$
7: $\quad \neg \mathrm{S} 1=2 \quad \vee \quad \neg(1 \cdot x)+x=(\mathrm{S} 1) \cdot x \quad \vee \quad(1 \cdot x)+x=(2) \cdot x$

Inferences:

8: $\quad \neg 1 \cdot x=x \quad \vee \quad \neg(1 \cdot x)+x=2 \cdot x \quad$ by
0: $\neg 2 \cdot x=x+x$
6: $\neg 1 \cdot x=x \quad \vee \quad \neg(1 \cdot x)+x=2 \cdot x \quad \vee \quad 2 \cdot x=x+x$
9: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2 \quad$ by
1: $\mathrm{S}(\mathrm{SO})=2$
5: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg \mathrm{~S}(\mathrm{~S} 0)=2 \quad \vee \quad \mathrm{~S} 1=2$
10: $\quad \mathrm{S} 1=2 \quad$ by
2: $\mathrm{S} 0=1$
9: $\neg \mathrm{S} 0=1 \quad \vee \quad \mathrm{~S} 1=2$

11: $\quad \neg \mathrm{S} 1=2 \quad \vee \quad(1 \cdot x)+x=2 \cdot x \quad$ by
3: $(1 \cdot x)+x=(\mathrm{S} 1) \cdot x$
$7: \neg \mathrm{S} 1=2 \quad \vee \quad \neg(1 \cdot x)+x=(\mathrm{S} 1) \cdot x \quad \vee \quad(1 \cdot x)+x=2 \cdot x$
12: $\neg(1 \cdot x)+x=2 \cdot x \quad$ by
4: $1 \cdot x=x$
$8: \neg 1 \cdot x=x \quad \vee \quad \neg(1 \cdot x)+x=2 \cdot x$
13: $\quad(1 \cdot x)+x=2 \cdot x \quad$ by
10: $\mathrm{S} 1=2$
11: $\neg \mathrm{S} 1=2 \quad \vee(1 \cdot x)+x=2 \cdot x$
14: $Q E A \quad$ by
12: $\neg(1 \cdot x)+x=2 \cdot x$
13: $(1 \cdot x)+x=2 \cdot x$

