Proof of Theorem 117

The theorem to be proved is

$$1 \cdot x = x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (1 \cdot x) = (x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 1 \cdot x = x$$
 from H:x

1:
$$S0 = 1$$
 from 115

2:
$$(0 \cdot x) + x = (S0) \cdot x$$
 from 104;0;x

3:
$$0 + x = x$$
 from $97;x$

4:
$$0 \cdot x = 0$$
 from $103;x$

Equality substitutions:

5:
$$\neg S0 = 1 \lor \neg (0 \cdot x) + x = (S0) \cdot x \lor (0 \cdot x) + x = (1) \cdot x$$

6:
$$\neg 0 + x = x \lor \neg 1 \cdot x = 0 + x \lor 1 \cdot x = x$$

7:
$$\neg 0 \cdot x = 0 \quad \lor \quad \neg (0 \cdot x) + x = 1 \cdot x \quad \lor \quad (0) + x = 1 \cdot x$$

Inferences:

8:
$$\neg 0 + x = x \lor \neg 1 \cdot x = 0 + x$$
 by

$$0: \neg 1 \cdot x = x$$

6:
$$\neg 0 + x = x \lor \neg 1 \cdot x = 0 + x \lor 1 \cdot x = x$$

9:
$$\neg (0 \cdot x) + x = (S0) \cdot x \lor (0 \cdot x) + x = 1 \cdot x$$
 by

1:
$$S0 = 1$$

5:
$$\neg S0 = 1 \lor \neg (0 \cdot x) + x = (S0) \cdot x \lor (0 \cdot x) + x = 1 \cdot x$$

10:
$$(0 \cdot x) + x = 1 \cdot x$$
 by

2:
$$(0 \cdot x) + x = (S0) \cdot x$$

9:
$$\neg (0 \cdot x) + x = (S0) \cdot x \lor (0 \cdot x) + x = 1 \cdot x$$

11:
$$\neg 1 \cdot x = 0 + x$$
 by

3:
$$0 + x = x$$

8:
$$\neg 0 + x = x \quad \lor \quad \neg 1 \cdot x = 0 + x$$

12:
$$\neg (0 \cdot x) + x = 1 \cdot x \lor 1 \cdot x = 0 + x$$
 by

4:
$$0 \cdot x = 0$$

7:
$$\neg 0 \cdot x = 0 \quad \lor \quad \neg (0 \cdot x) + x = 1 \cdot x \quad \lor \quad 1 \cdot x = 0 + x$$

13:
$$1 \cdot x = 0 + x$$
 by

10:
$$(0 \cdot x) + x = 1 \cdot x$$

12:
$$\neg (0 \cdot x) + x = 1 \cdot x \lor 1 \cdot x = 0 + x$$

14:
$$QEA$$
 by

11:
$$\neg 1 \cdot x = 0 + x$$

13:
$$1 \cdot x = 0 + x$$