Proof of Theorem 117

The theorem to be proved is
$1 \cdot x=x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(1 \cdot x)=(x)]]$

Special cases of the hypothesis and previous results:

$0: \quad \neg 1 \cdot x=x \quad$ from $\quad \mathrm{H}: x$
1: $\quad \mathrm{S} 0=1 \quad$ from $\quad 115$
2: $\quad(0 \cdot x)+x=(\mathrm{S} 0) \cdot x \quad$ from $\quad 104 ; 0 ; x$
3: $\quad 0+x=x \quad$ from $\quad \underline{97} ; x$
4: $0 \cdot x=0 \quad$ from $\quad \underline{103 ;} x$

Equality substitutions:

5: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \neg(0 \cdot x)+x=(\mathrm{S} 0) \cdot x \quad \vee \quad(0 \cdot x)+x=(1) \cdot x$
6: $\quad \neg 0+x=x \quad \vee \quad \neg 1 \cdot x=0+x \quad \vee \quad 1 \cdot x=x$
7: $\neg 0 \cdot x=0 \quad \vee \quad \neg(0 \cdot x)+x=1 \cdot x \quad \vee \quad(0)+x=1 \cdot x$

Inferences:

8: $\quad \neg 0+x=x \quad \vee \quad \neg 1 \cdot x=0+x \quad$ by
0: $\neg 1 \cdot x=x$
6: $\neg 0+x=x \quad \vee \quad \neg 1 \cdot x=0+x \quad \vee \quad 1 \cdot x=x$
9: $\quad \neg(0 \cdot x)+x=(\mathrm{S} 0) \cdot x \quad \vee \quad(0 \cdot x)+x=1 \cdot x \quad$ by
1: $\mathrm{S} 0=1$
5: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg(0 \cdot x)+x=(\mathrm{S} 0) \cdot x \quad \vee \quad(0 \cdot x)+x=1 \cdot x$
10: $\quad(0 \cdot x)+x=1 \cdot x \quad$ by
2: $(0 \cdot x)+x=(\mathrm{S} 0) \cdot x$
9: $\neg(0 \cdot x)+x=(\mathrm{S} 0) \cdot x \quad \vee \quad(0 \cdot x)+x=1 \cdot x$

11: $\neg 1 \cdot x=0+x \quad$ by
3: $0+x=x$
8: $\neg 0+x=x \quad \vee \quad \neg 1 \cdot x=0+x$
12: $\quad \neg(0 \cdot x)+x=1 \cdot x \quad \vee \quad 1 \cdot x=0+x \quad$ by
4: $0 \cdot x=0$
7: $\neg 0 \cdot x=0 \quad \vee \quad \neg(0 \cdot x)+x=1 \cdot x \quad \vee \quad 1 \cdot x=0+x$
13: $1 \cdot x=0+x \quad$ by
10: $(0 \cdot x)+x=1 \cdot x$
12: $\neg(0 \cdot x)+x=1 \cdot x \quad \vee \quad 1 \cdot x=0+x$
14: $Q E A$ by
11: $\neg 1 \cdot x=0+x$
$13: 1 \cdot x=0+x$

