Proof of Theorem 113

The theorem to be proved is
$x<y \quad \rightarrow \quad \mathrm{~S} x<\mathrm{S} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)<(y)] \quad \& \quad[\neg(\mathrm{~S} x)<(\mathrm{S} y)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llllll}
0: & x<y \quad \text { from } \quad \mathrm{H}: x: y \\
1: & \neg \mathrm{S} x<\mathrm{S} y \quad \text { from } \quad \mathrm{H}: x: y \\
2: & \neg x \leq y \quad \vee & \mathrm{~S} x \leq \mathrm{S} y \quad \text { from } \quad \underline{112 ;} ; x ; y \\
3: & \neg x<y \quad \vee \quad x \leq y \quad \text { from } \quad \underline{56}{ }^{\rightarrow} ; x ; y \\
4: & \neg x<y \quad \vee & \neg y=x \quad \text { from } \quad \underline{56}{ }^{\rightarrow} ; x ; y \\
5: & \mathrm{S} x<\mathrm{S} y \quad \vee & \neg \mathrm{~S} x \leq \mathrm{S} y & \vee & \mathrm{~S} y=\mathrm{S} x & \text { from } \\
6: & \neg 6^{\leftarrow} ; \mathrm{S} x ; \mathrm{S} y \\
6: & \neg \mathrm{S} y=\mathrm{S} x & \vee & y=x \quad \text { from } \quad \underline{4} ; x ; y & &
\end{array}
$$

Inferences:

7: $x \leq y \quad$ by
0: $x<y$
3: $\neg x<y \quad \vee \quad x \leq y$
8: $\quad \neg y=x \quad$ by
0: $x<y$
4: $\neg x<y \quad \vee \quad \neg y=x$
9: $\quad \neg \mathrm{S} x \leq \mathrm{S} y \quad \vee \quad \mathrm{~S} y=\mathrm{S} x \quad$ by
1: $\neg \mathrm{S} x<\mathrm{S} y$
5: $\mathrm{S} x<\mathrm{S} y \vee \neg \mathrm{~S} x \leq \mathrm{S} y \vee \mathrm{~S} y=\mathrm{S} x$
10: $\quad \mathrm{S} x \leq \mathrm{S} y \quad$ by
7: $x \leq y$
2: $\neg x \leq y \quad \vee \quad \mathrm{~S} x \leq \mathrm{S} y$
11: $\neg \mathrm{S} y=\mathrm{S} x \quad$ by
8: $\neg y=x$
6: $\neg \mathrm{S} y=\mathrm{S} x \quad \vee \quad y=x$

12: $\quad \mathrm{S} y=\mathrm{S} x \quad$ by
10: $\mathrm{S} x \leq \mathrm{S} y$
9: $\neg \mathrm{S} x \leq \mathrm{S} y \quad \vee \quad \mathrm{~S} y=\mathrm{S} x$
13: $Q E A$ by
11: $\neg \mathrm{S} y=\mathrm{S} x$
12: $\mathrm{S} y=\mathrm{S} x$

