Proof of Theorem 111

The theorem to be proved is

$$\neg [x < y \& y < Sx]$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) < (y)]$$
 & $[(y) < (Sx)]]$

Special cases of the hypothesis and previous results:

- 0: x < y from H:x:y
- 1: y < Sx from H:x:y
- 2: $\neg y < Sx \lor y \le x$ from <u>109</u>; y; x
- 3: $\neg x < y \quad \lor \quad \neg y \le x$ from <u>78</u>;x;y

Inferences:

- 4: $\neg y \le x$ by
 - 0: x < y
 - $3: \neg x < y \quad \lor \quad \neg y \le x$
- 5: $y \le x$ by
 - 1: y < Sx
 - $2: \neg y < \mathbf{S}x \quad \lor \quad y \le x$
- 6: QEA by
 - $4: \neg y \leq x$
 - 5: $y \le x$