Proof of Theorem 111

The theorem to be proved is
$\neg[x<y \quad \& \quad y<\mathrm{S} x]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $[[(x)<(y)] \quad \& \quad[(y)<(\mathrm{S} x)]]$

Special cases of the hypothesis and previous results:

0: $x<y$ from $\mathrm{H}: x: y$
1: $y<\mathrm{S} x$ from $\mathrm{H}: x: y$
2: $\neg y<\mathrm{S} x \vee y \leq x \quad$ from $109 ; y ; x$
3: $\neg x<y \quad \vee \neg y \leq x \quad$ from $\quad 78 ; x ; y$

Inferences:

4: $\neg y \leq x \quad$ by
0: $x<y$
3: $\neg x<y \quad \vee \quad \neg y \leq x$
5: $y \leq x \quad$ by
1: $y<\mathrm{S} x$
2: $\neg y<\mathrm{S} x \quad \vee \quad y \leq x$
6: $Q E A$ by
4: $\neg y \leq x$
5: $y \leq x$

