Proof of Theorem 110

The theorem to be proved is
$x \leq \mathrm{S} y \quad \rightarrow \quad x \leq y \quad \vee \quad x=\mathrm{S} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(\mathrm{S} y)] \quad \& \quad[\neg(x) \leq(y)] \quad \& \quad[\neg(x)=(\mathrm{S} y)]]$

Special cases of the hypothesis and previous results:
$0: x \leq \mathrm{S} y$ from $\mathrm{H}: x: y$
1: $\neg x \leq y$ from $\quad \mathrm{H}: x: y$
2: $\neg \mathrm{S} y=x \quad$ from $\quad \mathrm{H}: x: y$
3: $\neg x \leq \mathrm{S} y \quad \vee \quad x<\mathrm{S} y \quad \vee \quad \mathrm{~S} y=x \quad$ from $\quad \underline{61} ; x ; \mathrm{S} y$
4: $\neg x<\mathrm{S} y \vee x \leq y \quad$ from \quad 109; $x ; y$

Inferences:

5: $x<\mathrm{S} y \quad \vee \quad \mathrm{~S} y=x \quad$ by
0: $x \leq \mathrm{S} y$
3: $\neg x \leq \mathrm{S} y \quad \vee \quad x<\mathrm{S} y \quad \vee \quad \mathrm{~S} y=x$
6: $\neg x<\mathrm{S} y \quad$ by
1: $\neg x \leq y$
4: $\neg x<\mathrm{S} y \quad \vee \quad x \leq y$
7: $x<\mathrm{S} y \quad$ by
2: $\neg \mathrm{S} y=x$
5: $x<\mathrm{S} y \vee \quad \mathrm{~S} y=x$
8: $Q E A$ by
6: $\neg x<\mathrm{S} y$
7: $x<\mathrm{S} y$

