Proof of Theorem 110

The theorem to be proved is

$$x \le Sy \rightarrow x \le y \lor x = Sy$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (Sy)] \& [\neg (x) \le (y)] \& [\neg (x) = (Sy)]]$$

Special cases of the hypothesis and previous results:

0:
$$x \leq Sy$$
 from H: $x:y$

1:
$$\neg x \le y$$
 from H:x:y

2:
$$\neg Sy = x$$
 from H:x:y

3:
$$\neg x \leq Sy \lor x < Sy \lor Sy = x$$
 from 61; x ; Sy

4:
$$\neg x < Sy \lor x \le y$$
 from 109; $x;y$

Inferences:

5:
$$x < Sy \lor Sy = x$$
 by

$$0: x \leq Sy$$

3:
$$\neg x \leq Sy \quad \lor \quad x < Sy \quad \lor \quad Sy = x$$

6:
$$\neg x < Sy$$
 by

1:
$$\neg x \leq y$$

4:
$$\neg x < Sy \lor x \le y$$

7:
$$x < Sy$$
 by

$$2: \neg Sy = x$$

5:
$$x < Sy \quad \lor \quad Sy = x$$

8:
$$QEA$$
 by

6:
$$\neg x < Sy$$

7:
$$x < Sy$$