Proof of Theorem 105b

The theorem to be proved is
$x \cdot 0=0 \cdot x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(x \cdot 0)=(0 \cdot x)]]$

Special cases of the hypothesis and previous results:

$0:$	$\neg 0 \cdot x=x \cdot 0$	from $\quad \mathrm{H}: x$	
$1:$	$x \cdot 0=0$	from	$\underline{100} ; x$
$2:$	$0 \cdot x=0$	from	$\underline{103} ; x$

Equality substitutions:

3: $\quad \neg \cdot x \cdot 0=0 \quad \vee \quad 0 \cdot x=x \cdot 0 \quad \vee \quad \neg 0 \cdot x=0$

Inferences:

4: $\quad \neg x \cdot 0=0 \quad \vee \quad \neg 0 \cdot x=0 \quad$ by
$0: \neg 0 \cdot x=x \cdot 0$
3: $\neg x \cdot 0=0 \quad \vee \quad 0 \cdot x=x \cdot 0 \quad \vee \quad \neg 0 \cdot x=0$
5: $\quad \neg 0 \cdot x=0 \quad$ by
1: $x \cdot 0=0$
4: $\neg x \cdot 0=0 \quad \vee \quad \neg 0 \cdot x=0$
6: $Q E A$ by
2: $0 \cdot x=0$
5: $\neg 0 \cdot x=0$

