Proof of Theorem 105b

The theorem to be proved is

$$x\cdot 0 = 0\cdot x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x \cdot 0) = (0 \cdot x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 \cdot x = x \cdot 0$$
 from H:x

1:
$$x \cdot 0 = 0$$
 from $100; x$

2:
$$0 \cdot x = 0$$
 from $103; x$

Equality substitutions:

3:
$$\neg x \cdot 0 = 0 \quad \lor \quad 0 \cdot x = x \cdot 0 \quad \lor \quad \neg 0 \cdot x = 0$$

Inferences:

4:
$$\neg x \cdot 0 = 0 \quad \lor \quad \neg 0 \cdot x = 0$$
 by

$$0: \neg 0 \cdot x = x \cdot 0$$

3:
$$\neg x \cdot 0 = 0 \quad \lor \quad 0 \cdot x = x \cdot 0 \quad \lor \quad \neg 0 \cdot x = 0$$

5:
$$\neg 0 \cdot x = 0$$
 by

1:
$$x \cdot 0 = 0$$

$$4: \neg x \cdot 0 = 0 \quad \lor \quad \neg 0 \cdot x = 0$$

$$6: QEA$$
 by

2:
$$0 \cdot x = 0$$

5:
$$\neg 0 \cdot x = 0$$