Proof of Theorem 104b

The theorem to be proved is

$$Sx \cdot 0 = x \cdot 0 + 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg ((Sx) \cdot 0) = ((x \cdot 0) + 0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg (x \cdot 0) + 0 = (Sx) \cdot 0$$
 from H:x

1:
$$(Sx) \cdot 0 = 0$$
 from 100; Sx

2:
$$x \cdot 0 = 0$$
 from $100; x$

3:
$$0 + 0 = 0$$
 from 12;0

Equality substitutions:

4:
$$\neg (Sx) \cdot 0 = 0 \quad \lor \quad (x \cdot 0) + 0 = (Sx) \cdot 0 \quad \lor \quad \neg (x \cdot 0) + 0 = 0$$

5:
$$\neg x \cdot 0 = 0 \lor (x \cdot 0) + 0 = 0 \lor \neg (0) + 0 = 0$$

Inferences:

6:
$$\neg (Sx) \cdot 0 = 0 \quad \lor \quad \neg (x \cdot 0) + 0 = 0$$
 by

$$0: \neg (x \cdot 0) + 0 = (Sx) \cdot 0$$

4:
$$\neg (Sx) \cdot 0 = 0 \quad \lor \quad (x \cdot 0) + 0 = (Sx) \cdot 0 \quad \lor \quad \neg (x \cdot 0) + 0 = 0$$

7:
$$\neg (x \cdot 0) + 0 = 0$$
 by

1:
$$(Sx) \cdot 0 = 0$$

6:
$$\neg (Sx) \cdot 0 = 0 \quad \lor \quad \neg (x \cdot 0) + 0 = 0$$

8:
$$(x \cdot 0) + 0 = 0 \quad \lor \quad \neg 0 + 0 = 0$$
 by

2:
$$x \cdot 0 = 0$$

5:
$$\neg x \cdot 0 = 0 \quad \lor \quad (x \cdot 0) + 0 = 0 \quad \lor \quad \neg 0 + 0 = 0$$

9:
$$(x \cdot 0) + 0 = 0$$
 by

$$3: 0+0=0$$

8:
$$(x \cdot 0) + 0 = 0 \quad \lor \quad \neg 0 + 0 = 0$$

10:
$$QEA$$
 by

7:
$$\neg (x \cdot 0) + 0 = 0$$

9:
$$(x \cdot 0) + 0 = 0$$