Proof of Theorem 104b

The theorem to be proved is
$\mathrm{S} x \cdot 0=x \cdot 0+0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg((\mathrm{S} x) \cdot 0)=((x \cdot 0)+0)]]$

Special cases of the hypothesis and previous results:

$0: \quad \neg(x \cdot 0)+0=(\mathrm{S} x) \cdot 0 \quad$ from $\quad \mathrm{H}: x$
1: $\quad(\mathrm{S} x) \cdot 0=0 \quad$ from $\quad 100 ; \mathrm{S} x$
2: $x \cdot 0=0 \quad$ from $100 ; x$
3: $0+0=0 \quad$ from $\quad \underline{12 ; 0}$

Equality substitutions:

4: $\neg(\mathrm{S} x) \cdot 0=0 \quad \vee(x \cdot 0)+0=(\mathrm{S} x) \cdot 0 \quad \vee \quad \neg(x \cdot 0)+0=0$
5: $\neg x \cdot 0=0 \quad \vee(x \cdot 0)+0=0 \quad \vee \quad \neg(0)+0=0$

Inferences:

6: $\quad \neg(\mathrm{S} x) \cdot 0=0 \quad \vee \quad \neg(x \cdot 0)+0=0 \quad$ by
$0: \neg(x \cdot 0)+0=(\mathrm{S} x) \cdot 0$
4: $\neg(\mathrm{S} x) \cdot 0=0 \quad \vee(x \cdot 0)+0=(\mathrm{S} x) \cdot 0 \quad \vee \quad \neg(x \cdot 0)+0=0$
7: $\neg(x \cdot 0)+0=0 \quad$ by
1: $(\mathrm{S} x) \cdot 0=0$
6: $\neg(\mathrm{S} x) \cdot 0=0 \quad \vee \quad \neg(x \cdot 0)+0=0$
8: $\quad(x \cdot 0)+0=0 \quad \vee \quad \neg 0+0=0 \quad$ by
$2: x \cdot 0=0$
5: $\neg x \cdot 0=0 \quad \vee \quad(x \cdot 0)+0=0 \quad \vee \quad \neg 0+0=0$
9: $\quad(x \cdot 0)+0=0 \quad$ by
3: $0+0=0$
8: $(x \cdot 0)+0=0 \quad \vee \quad \neg 0+0=0$
10: $Q E A$ by
7: $\neg(x \cdot 0)+0=0$
9: $(x \cdot 0)+0=0$

