Proof of Theorem 103i

The theorem to be proved is
$0 \cdot x=0 \quad \rightarrow \quad 0 \cdot \mathrm{~S} x=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(0 \cdot x)=(0)] \quad \& \quad[\neg(0 \cdot(\mathrm{~S} x))=(0)]]$

Special cases of the hypothesis and previous results:
0: $\quad 0 \cdot x=0 \quad$ from $\quad \mathrm{H}: x$
1: $\neg 0 \cdot(\mathrm{~S} x)=0 \quad$ from $\mathrm{H}: x$
2: $\quad(0 \cdot x)+0=0 \cdot(\mathrm{~S} x) \quad$ from $\quad 100 ; 0 ; x$
3: $0+0=0 \quad$ from $\quad \underline{12 ; 0}$

Equality substitutions:

$$
\begin{aligned}
& \text { 4: } \quad \neg 0 \cdot x=0 \quad \vee \quad \neg(0 \cdot x)+0=0 \cdot(\mathrm{~S} x) \quad \vee \quad(0)+0=0 \cdot(\mathrm{~S} x) \\
& \text { 5: } \quad \neg 0+0=0 \quad \vee \quad \neg 0 \cdot(\mathrm{~S} x)=0+0 \quad \vee \quad 0 \cdot(\mathrm{~S} x)=0
\end{aligned}
$$

Inferences:

6: $\quad \neg(0 \cdot x)+0=0 \cdot(\mathrm{~S} x) \quad \vee \quad 0 \cdot(\mathrm{~S} x)=0+0 \quad$ by
0: $0 \cdot x=0$
4: $\neg 0 \cdot x=0 \quad \vee \quad \neg(0 \cdot x)+0=0 \cdot(\mathrm{~S} x) \quad \vee \quad 0 \cdot(\mathrm{~S} x)=0+0$
7: $\neg 0+0=0 \quad \vee \quad \neg 0 \cdot(\mathrm{~S} x)=0+0 \quad$ by
1: $\neg 0 \cdot(\mathrm{~S} x)=0$
5: $\neg 0+0=0 \quad \vee \quad \neg 0 \cdot(\mathrm{~S} x)=0+0 \quad \vee \quad 0 \cdot(\mathrm{~S} x)=0$
8: $\quad 0 \cdot(\mathrm{~S} x)=0+0 \quad$ by
2: $(0 \cdot x)+0=0 \cdot(\mathrm{~S} x)$
6: $\neg(0 \cdot x)+0=0 \cdot(\mathrm{~S} x) \quad \vee \quad 0 \cdot(\mathrm{~S} x)=0+0$
9: $\neg 0 \cdot(\mathrm{~S} x)=0+0 \quad$ by
3: $0+0=0$
7: $\neg 0+0=0 \quad \vee \quad \neg 0 \cdot(\mathrm{~S} x)=0+0$
10: $Q E A$ by
8: $0 \cdot(\mathrm{~S} x)=0+0$
9: $\neg 0 \cdot(\mathrm{~S} x)=0+0$

