Proof of Theorem 101b

The theorem to be proved is

$$x \cdot (y+0) = x \cdot y + x \cdot 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x \cdot (y+0)) = ((x \cdot y) + (x \cdot 0))]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg (x \cdot y) + (x \cdot 0) = x \cdot (y + 0)$$
 from H:x:y

1:
$$y + 0 = y$$
 from $12; y$

2:
$$x \cdot 0 = 0$$
 from $100; x$

3:
$$(x \cdot y) + 0 = x \cdot y$$
 from $\underline{12}; x \cdot y$

Equality substitutions:

4:
$$\neg y + 0 = y \lor (x \cdot y) + (x \cdot 0) = x \cdot (y + 0) \lor \neg (x \cdot y) + (x \cdot 0) = x \cdot (y)$$

5:
$$\neg x \cdot 0 = 0 \quad \lor \quad (x \cdot y) + (x \cdot 0) = x \cdot y \quad \lor \quad \neg (x \cdot y) + (0) = x \cdot y$$

Inferences:

6:
$$\neg y + 0 = y \quad \lor \quad \neg (x \cdot y) + (x \cdot 0) = x \cdot y$$
 by

0:
$$\neg (x \cdot y) + (x \cdot 0) = x \cdot (y + 0)$$

4:
$$\neg y + 0 = y \lor (x \cdot y) + (x \cdot 0) = x \cdot (y + 0) \lor \neg (x \cdot y) + (x \cdot 0) = x \cdot y$$

7:
$$\neg (x \cdot y) + (x \cdot 0) = x \cdot y$$
 by

1:
$$y + 0 = y$$

6:
$$\neg y + 0 = y \quad \lor \quad \neg (x \cdot y) + (x \cdot 0) = x \cdot y$$

8:
$$(x \cdot y) + (x \cdot 0) = x \cdot y \quad \forall \quad \neg (x \cdot y) + 0 = x \cdot y$$
 by

2:
$$x \cdot 0 = 0$$

5:
$$\neg x \cdot 0 = 0 \quad \lor \quad (x \cdot y) + (x \cdot 0) = x \cdot y \quad \lor \quad \neg (x \cdot y) + 0 = x \cdot y$$

9:
$$(x \cdot y) + (x \cdot 0) = x \cdot y$$
 by

3:
$$(x \cdot y) + 0 = x \cdot y$$

8:
$$(x \cdot y) + (x \cdot 0) = x \cdot y \quad \lor \quad \neg (x \cdot y) + 0 = x \cdot y$$

10:
$$QEA$$
 by

7:
$$\neg (x \cdot y) + (x \cdot 0) = x \cdot y$$

9:
$$(x \cdot y) + (x \cdot 0) = x \cdot y$$