Proof of Theorem 013

The theorem to be proved is
$\operatorname{last-bit}\left(x, b_{1}\right) \quad \& \quad \operatorname{last-bit}\left(x, b_{2}\right) \quad \rightarrow \quad b_{1}=b_{2}$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad\left[\left[\operatorname{last}-\mathrm{bit}\left(\left(x b_{1}\right)\right)\right] \quad \& \quad\left[\operatorname{last-bit}\left(\left(x b_{2}\right)\right)\right] \quad \& \quad\left[\neg\left(b_{1}\right)=\left(b_{2}\right)\right]\right]$

Special cases of the hypothesis and previous results:

Equality substitutions:

5: $\neg \epsilon=b_{1} \quad \vee \neg \epsilon=b_{2} \quad \vee \quad b_{1}=b_{2}$

Inferences:

6: $\quad \epsilon=b_{1} \quad$ by
0: last-bit $\left(\left(x b_{1}\right)\right)$
3: $\neg \operatorname{last}-\operatorname{bit}\left(\left(x b_{1}\right)\right) \quad \vee \quad \epsilon=b_{1}$
7: $\quad \epsilon=b_{2} \quad$ by
1: last-bit $\left(\left(x b_{2}\right)\right)$
4: \neg last-bit $\left(\left(x b_{2}\right)\right) \quad \vee \quad \epsilon=b_{2}$
8: $\neg \epsilon=b_{1} \quad \vee \neg \epsilon=b_{2} \quad$ by
2: $\neg b_{2}=b_{1}$
5: $\neg \epsilon=b_{1} \quad \vee \quad \neg \epsilon=b_{2} \quad \vee \quad b_{2}=b_{1}$
9: $\neg \epsilon=b_{2} \quad$ by
6: $\epsilon=b_{1}$
8: $\neg \epsilon=b_{1} \quad \vee \quad \neg \epsilon=b_{2}$
10: $Q E A$ by
7: $\epsilon=b_{2}$
9: $\neg \epsilon=b_{2}$

