Proof of Theorem 013

The theorem to be proved is

last-bit
$$(x, b_1)$$
 & last-bit (x, b_2) \rightarrow $b_1 = b_2$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[last-bit((xb_1))] \& [last-bit((xb_2))] \& [\neg (b_1) = (b_2)]]$$

Special cases of the hypothesis and previous results:

- 0: $last-bit((xb_1))$ from $H:x:b_1:b_2$
- 1: $last-bit((xb_2))$ from $H:x:b_1:b_2$
- 2: $\neg b_2 = b_1$ from H: $x:b_1:b_2$
- 3: $\neg \text{last-bit}((xb_1)) \lor \epsilon = b_1 \text{ from } \underline{012} ; x; b_1$
- 4: $\neg \text{last-bit}((xb_2)) \lor \epsilon = b_2 \text{ from } \underline{012} ; x; b_2$

Equality substitutions:

5:
$$\neg \epsilon = b_1 \quad \lor \quad \neg \epsilon = b_2 \quad \lor \quad b_1 = b_2$$

Inferences:

- 6: $\epsilon = b_1$ by
 - 0: last-bit((xb_1))
 - 3: $\neg \operatorname{last-bit}((xb_1)) \lor \epsilon = b_1$
- 7: $\epsilon = b_2$ by
 - 1: $last-bit((xb_2))$
 - 4: $\neg \operatorname{last-bit}((xb_2)) \lor \epsilon = b_2$
- 8: $\neg \epsilon = b_1 \lor \neg \epsilon = b_2$ by
 - 2: $\neg b_2 = b_1$
 - 5: $\neg \epsilon = b_1 \lor \neg \epsilon = b_2 \lor b_2 = b_1$
- 9: $\neg \epsilon = b_2$ by
 - 6: $\epsilon = b_1$
 - 8: $\neg \epsilon = b_1 \lor \neg \epsilon = b_2$
- 10: QEA by
 - 7: $\epsilon = b_2$
 - 9: $\neg \epsilon = b_2$