Proof of Theorem 011

The theorem to be proved is

$$x$$
 ends with y & y ends with $x \rightarrow x = y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \text{ ends with } (y)] \& [(y) \text{ ends with } (x)] \& [\neg (x) = (y)]]$$

Special cases of the hypothesis and previous results:

- 0: x ends with y from H:x:y
- 1: y ends with x from H:x:y
- 2: $\neg y = x$ from H:x:y
- 3: $\neg x$ ends with $y \lor c \oplus y = x$ from $288^{\Rightarrow};x;y:c$
- 4: $\neg y$ ends with $x \lor d \oplus x = y$ from $288^{\Rightarrow};y;x:d$
- 5: $\epsilon \oplus x = x$ from 194;x
- 6: $c \oplus (d \oplus x) = (c \oplus d) \oplus x$ from 183;c;d;x
- 7: $\neg (c \oplus d) \oplus x = \epsilon \oplus x \quad \lor \quad c \oplus d = \epsilon \quad \text{from} \quad \underline{197}; \epsilon; x; c \oplus d$
- 8: $\neg c \oplus d = \epsilon \lor \epsilon = d$ from 204;c;d

Equality substitutions:

9:
$$\neg c \oplus y = x \quad \lor \quad \epsilon \oplus x = c \oplus y \quad \lor \quad \neg \epsilon \oplus x = x$$

10:
$$\neg d \oplus x = y \quad \lor \quad \neg c \oplus (d \oplus x) = (c \oplus d) \oplus x \quad \lor \quad c \oplus (y) = (c \oplus d) \oplus x$$

11:
$$\neg \epsilon \oplus x = x \quad \lor \quad \neg \epsilon \oplus x = y \quad \lor \quad x = y$$

12:
$$\neg \epsilon = d \lor \epsilon \oplus x = y \lor \neg d \oplus x = y$$

13:
$$\neg (c \oplus d) \oplus x = c \oplus y \lor (c \oplus d) \oplus x = \epsilon \oplus x \lor \neg c \oplus y = \epsilon \oplus x$$

Inferences:

14:
$$c \oplus y = x$$
 by

0: x ends with y

3:
$$\neg x \text{ ends with } y \lor c \oplus y = x$$

15:
$$d \oplus x = y$$
 by

1: y ends with x

4: $\neg y \text{ ends with } x \lor d \oplus x = y$

16:
$$\neg \epsilon \oplus x = x \lor \neg \epsilon \oplus x = y$$
 by

 $2: \neg y = x$

11:
$$\neg \epsilon \oplus x = x \quad \lor \quad \neg \epsilon \oplus x = y \quad \lor \quad y = x$$

17:
$$\neg c \oplus y = x \quad \lor \quad \epsilon \oplus x = c \oplus y$$
 by

5: $\epsilon \oplus x = x$

9:
$$\neg c \oplus y = x \quad \lor \quad \epsilon \oplus x = c \oplus y \quad \lor \quad \neg \epsilon \oplus x = x$$

18:
$$\neg \epsilon \oplus x = y$$
 by

5: $\epsilon \oplus x = x$

16:
$$\neg \epsilon \oplus x = x \quad \lor \quad \neg \epsilon \oplus x = y$$

19:
$$\neg d \oplus x = y \lor (c \oplus d) \oplus x = c \oplus y$$
 by

6: $c \oplus (d \oplus x) = (c \oplus d) \oplus x$

10:
$$\neg d \oplus x = y \quad \lor \quad \neg c \oplus (d \oplus x) = (c \oplus d) \oplus x \quad \lor \quad (c \oplus d) \oplus x = c \oplus y$$

20:
$$\epsilon \oplus x = c \oplus y$$
 by

14: $c \oplus y = x$

17:
$$\neg c \oplus y = x \quad \lor \quad \epsilon \oplus x = c \oplus y$$

21:
$$\neg \epsilon = d \lor \epsilon \oplus x = y$$
 by

15: $d \oplus x = y$

12:
$$\neg \epsilon = d \quad \lor \quad \epsilon \oplus x = y \quad \lor \quad \neg d \oplus x = y$$

22:
$$(c \oplus d) \oplus x = c \oplus y$$
 by

15: $d \oplus x = y$

19:
$$\neg d \oplus x = y \quad \lor \quad (c \oplus d) \oplus x = c \oplus y$$

23:
$$\neg \epsilon = d$$
 by

18:
$$\neg \epsilon \oplus x = y$$

21:
$$\neg \epsilon = d \lor \epsilon \oplus x = y$$

24:
$$\neg (c \oplus d) \oplus x = c \oplus y \lor (c \oplus d) \oplus x = \epsilon \oplus x$$
 by

20: $\epsilon \oplus x = c \oplus y$

13:
$$\neg (c \oplus d) \oplus x = c \oplus y \lor (c \oplus d) \oplus x = \epsilon \oplus x \lor \neg \epsilon \oplus x = c \oplus y$$

25:
$$(c \oplus d) \oplus x = \epsilon \oplus x$$
 by

22:
$$(c \oplus d) \oplus x = c \oplus y$$

24:
$$\neg (c \oplus d) \oplus x = c \oplus y \lor (c \oplus d) \oplus x = \epsilon \oplus x$$

26:
$$\neg c \oplus d = \epsilon$$
 by

23:
$$\neg \epsilon = d$$

8:
$$\neg c \oplus d = \epsilon \quad \lor \quad \epsilon = d$$

27:
$$c \oplus d = \epsilon$$
 by

25:
$$(c \oplus d) \oplus x = \epsilon \oplus x$$

7:
$$\neg (c \oplus d) \oplus x = \epsilon \oplus x \quad \lor \quad c \oplus d = \epsilon$$

28:
$$QEA$$
 by

26:
$$\neg c \oplus d = \epsilon$$

27:
$$c \oplus d = \epsilon$$