Proof of Theorem 011

The theorem to be proved is
x ends with $y \quad \& \quad y$ ends with $x \quad \rightarrow \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(x)$ ends with $(y)] \quad \& \quad[(y)$ ends with $(x)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:

$0: \quad x$ ends with $y \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad y$ ends with x from $\mathrm{H}: x: y$
2: $\neg y=x \quad$ from $\quad \mathrm{H}: x: y$
3: $\neg x$ ends with $y \vee c \oplus y=x \quad$ from $\quad \underline{288}^{\rightarrow} ; x ; y: c$
4: $\neg y$ ends with $x \quad \vee \quad d \oplus x=y \quad$ from $\quad \underline{288} \rightarrow ; y ; x: d$
5: $\epsilon \oplus x=x \quad$ from $194 ; x$
6: $\quad c \oplus(d \oplus x)=(c \oplus d) \oplus x \quad$ from $\quad 183 ; c ; d ; x$
7: $\quad \neg(c \oplus d) \oplus x=\epsilon \oplus x \quad \vee \quad c \oplus d=\epsilon \quad$ from $\quad \underline{197} ; \epsilon ; x ; c \oplus d$
8: $\neg c \oplus d=\epsilon \quad \vee \quad \epsilon=d \quad$ from $\quad \underline{204} ; c ; d$

Equality substitutions:

9: $\quad \neg c \oplus y=x \quad \vee \quad \epsilon \oplus x=c \oplus y \quad \vee \quad \neg \epsilon \oplus x=x$
10: $\quad \neg d \oplus x=y \quad \vee \quad \neg c \oplus(d \oplus x)=(c \oplus d) \oplus x \quad \vee \quad c \oplus(y)=(c \oplus d) \oplus x$
11: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x=y \quad \vee \quad x=y$
12: $\neg \epsilon=d \vee \quad \epsilon \oplus x=y \quad \vee \quad \neg d \oplus x=y$
13: $\quad \neg(c \oplus d) \oplus x=c \oplus y \quad \vee(c \oplus d) \oplus x=\epsilon \oplus x \quad \vee \quad \neg c \oplus y=\epsilon \oplus x$

Inferences:

14: $\quad c \oplus y=x \quad$ by
0: x ends with y
3: $\neg x$ ends with $y \vee \quad c \oplus y=x$

15: $\quad d \oplus x=y \quad$ by
1: y ends with x
4: $\neg y$ ends with $x \quad \vee \quad d \oplus x=y$
16: $\quad \neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x=y \quad$ by
2: $\neg y=x$
11: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x=y \quad \vee \quad y=x$
17: $\quad \neg c \oplus y=x \quad \vee \quad \epsilon \oplus x=c \oplus y \quad$ by
5: $\epsilon \oplus x=x$
9: $\neg c \oplus y=x \quad \vee \quad \epsilon \oplus x=c \oplus y \quad \vee \quad \neg \epsilon \oplus x=x$
18: $\neg \epsilon \oplus x=y \quad$ by
5: $\epsilon \oplus x=x$
16: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x=y$
19: $\quad \neg d \oplus x=y \quad \vee \quad(c \oplus d) \oplus x=c \oplus y \quad$ by
6: $c \oplus(d \oplus x)=(c \oplus d) \oplus x$
10: $\neg d \oplus x=y \quad \vee \quad \neg c \oplus(d \oplus x)=(c \oplus d) \oplus x \quad \vee \quad(c \oplus d) \oplus x=c \oplus y$
20: $\quad \epsilon \oplus x=c \oplus y \quad$ by
14: $c \oplus y=x$
17: $\neg c \oplus y=x \quad \vee \quad \epsilon \oplus x=c \oplus y$
21: $\neg \epsilon=d \vee \epsilon \oplus x=y \quad$ by
15: $d \oplus x=y$
12: $\neg \epsilon=d \vee \epsilon \oplus x=y \vee \neg d \oplus x=y$
22: $\quad(c \oplus d) \oplus x=c \oplus y \quad$ by
15: $d \oplus x=y$
19: $\neg d \oplus x=y \quad \vee \quad(c \oplus d) \oplus x=c \oplus y$
23: $\neg \epsilon=d \quad$ by
18: $\neg \epsilon \oplus x=y$
21: $\neg \epsilon=d \quad \vee \quad \epsilon \oplus x=y$
24: $\quad \neg(c \oplus d) \oplus x=c \oplus y \quad \vee \quad(c \oplus d) \oplus x=\epsilon \oplus x \quad$ by
20: $\epsilon \oplus x=c \oplus y$
13: $\neg(c \oplus d) \oplus x=c \oplus y \quad \vee \quad(c \oplus d) \oplus x=\epsilon \oplus x \quad \vee \quad \neg \epsilon \oplus x=c \oplus y$
25: $\quad(c \oplus d) \oplus x=\epsilon \oplus x \quad$ by
22: $(c \oplus d) \oplus x=c \oplus y$
24: $\neg(c \oplus d) \oplus x=c \oplus y \quad \vee \quad(c \oplus d) \oplus x=\epsilon \oplus x$

26: $\neg c \oplus d=\epsilon \quad$ by
23: $\neg \epsilon=d$
8: $\neg c \oplus d=\epsilon \quad \vee \quad \epsilon=d$
27: $\quad c \oplus d=\epsilon \quad$ by
25: $(c \oplus d) \oplus x=\epsilon \oplus x$
7: $\neg(c \oplus d) \oplus x=\epsilon \oplus x \quad \vee \quad c \oplus d=\epsilon$
28: $Q E A \quad$ by
26: $\neg c \oplus d=\epsilon$
27: $c \oplus d=\epsilon$

