Proof of Theorem 010

The theorem to be proved is

x begins with y & y begins with $x \rightarrow x = y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x) \text{ begins with } (y)] \& [(y) \text{ begins with } (x)] \& [\neg (x) = (y)]]$

Special cases of the hypothesis and previous results:

- 0: x begins with y from H:x:y
- 1: y begins with x from H:x:y
- 2: $\neg y = x$ from H:x:y
- 3: $\neg x$ begins with $y \lor y \oplus c = x$ from $290^{\Rightarrow};x;y:c$
- 4: $\neg y$ begins with $x \lor x \oplus d = y$ from $290^{\Rightarrow};y;x:d$
- 5: $x \oplus (d \oplus c) = (x \oplus d) \oplus c$ from 183;x;d;c
- 6: $x \oplus \epsilon = x$ from 196;x
- 7: $\neg x \oplus (d \oplus c) = x \oplus \epsilon \quad \lor \quad d \oplus c = \epsilon \quad \text{from} \quad 199; x; \epsilon; d \oplus c$
- 8: $\neg d \oplus c = \epsilon \quad \lor \quad \epsilon = d$ from <u>204</u>;d;c

Equality substitutions:

9:
$$\neg y \oplus c = x \quad \lor \quad x \oplus \epsilon = y \oplus c \quad \lor \quad \neg x \oplus \epsilon = x$$

10:
$$\neg x \oplus d = y \quad \lor \quad \neg x \oplus (d \oplus c) = (x \oplus d) \oplus c \quad \lor \quad x \oplus (d \oplus c) = (y) \oplus c$$

11:
$$\neg x \oplus \epsilon = x \quad \lor \quad \neg x \oplus \epsilon = y \quad \lor \quad x = y$$

12:
$$\neg \epsilon = d \lor x \oplus \epsilon = y \lor \neg x \oplus d = y$$

13:
$$\neg x \oplus (d \oplus c) = y \oplus c \quad \lor \quad x \oplus (d \oplus c) = x \oplus \epsilon \quad \lor \quad \neg y \oplus c = x \oplus \epsilon$$

Inferences:

- 14: $y \oplus c = x$ by
 - 0: x begins with y
 - 3: $\neg x$ begins with $y \lor y \oplus c = x$

15:
$$x \oplus d = y$$
 by

1: y begins with x

4: $\neg y$ begins with $x \lor x \oplus d = y$

16:
$$\neg x \oplus \epsilon = x \lor \neg x \oplus \epsilon = y$$
 by

 $2: \neg y = x$

11:
$$\neg x \oplus \epsilon = x \quad \lor \quad \neg x \oplus \epsilon = y \quad \lor \quad y = x$$

17:
$$\neg x \oplus d = y \lor x \oplus (d \oplus c) = y \oplus c$$
 by

5: $x \oplus (d \oplus c) = (x \oplus d) \oplus c$

10:
$$\neg x \oplus d = y \quad \lor \quad \neg x \oplus (d \oplus c) = (x \oplus d) \oplus c \quad \lor \quad x \oplus (d \oplus c) = y \oplus c$$

18:
$$\neg y \oplus c = x \quad \lor \quad x \oplus \epsilon = y \oplus c$$
 by

6: $x \oplus \epsilon = x$

9:
$$\neg y \oplus c = x \quad \lor \quad x \oplus \epsilon = y \oplus c \quad \lor \quad \neg x \oplus \epsilon = x$$

19:
$$\neg x \oplus \epsilon = y$$
 by

6: $x \oplus \epsilon = x$

16:
$$\neg x \oplus \epsilon = x \quad \lor \quad \neg x \oplus \epsilon = y$$

20:
$$x \oplus \epsilon = y \oplus c$$
 by

14: $y \oplus c = x$

18:
$$\neg y \oplus c = x \quad \lor \quad x \oplus \epsilon = y \oplus c$$

21:
$$\neg \epsilon = d \lor x \oplus \epsilon = y$$
 by

15: $x \oplus d = y$

12:
$$\neg \epsilon = d \lor x \oplus \epsilon = y \lor \neg x \oplus d = y$$

22:
$$x \oplus (d \oplus c) = y \oplus c$$
 by

15: $x \oplus d = y$

17:
$$\neg x \oplus d = y \quad \lor \quad x \oplus (d \oplus c) = y \oplus c$$

23:
$$\neg \epsilon = d$$
 by

19:
$$\neg x \oplus \epsilon = y$$

21:
$$\neg \epsilon = d \lor x \oplus \epsilon = y$$

24:
$$\neg x \oplus (d \oplus c) = y \oplus c \quad \lor \quad x \oplus (d \oplus c) = x \oplus \epsilon$$
 by

20: $x \oplus \epsilon = y \oplus c$

13:
$$\neg x \oplus (d \oplus c) = y \oplus c \quad \lor \quad x \oplus (d \oplus c) = x \oplus \epsilon \quad \lor \quad \neg x \oplus \epsilon = y \oplus c$$

25:
$$x \oplus (d \oplus c) = x \oplus \epsilon$$
 by

22:
$$x \oplus (d \oplus c) = y \oplus c$$

24:
$$\neg x \oplus (d \oplus c) = y \oplus c \quad \lor \quad x \oplus (d \oplus c) = x \oplus \epsilon$$

26:
$$\neg d \oplus c = \epsilon$$
 by

23:
$$\neg \epsilon = d$$

8:
$$\neg d \oplus c = \epsilon \quad \lor \quad \epsilon = d$$

27:
$$d \oplus c = \epsilon$$
 by

25:
$$x \oplus (d \oplus c) = x \oplus \epsilon$$

7:
$$\neg x \oplus (d \oplus c) = x \oplus \epsilon \quad \lor \quad d \oplus c = \epsilon$$

28:
$$QEA$$
 by

26:
$$\neg d \oplus c = \epsilon$$

27:
$$d \oplus c = \epsilon$$