Proof of Theorem 008

The theorem to be proved is

$$x \leq \epsilon \quad \rightarrow \quad x = \epsilon$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \leq (\epsilon)]$$
 & $[\neg (x) = (\epsilon)]]$

Special cases of the hypothesis and previous results:

- 0: $x \leq \epsilon$ from H:x
- 1: $\neg \epsilon = x$ from H:x
- 2: $\neg x \leq \epsilon \lor \text{Length} x \leq \text{Length} \epsilon \text{ from } \underline{264} \Rightarrow ; x; \epsilon$
- 3: $\neg \text{Length} x \leq 0 \lor \text{Length} x = 0$ from 57; Length $x \leq 0$
- 4: $\neg \text{Length} x = 0 \lor \epsilon = x$ from 001; x
- 5: Length $\epsilon = 0$ from 259

Equality substitutions:

6:
$$\neg \text{Length}\epsilon = 0 \lor \neg \text{Length}x \leq \frac{\text{Length}\epsilon}{} \lor \text{Length}x \leq \frac{0}{}$$

Inferences:

- 7: Length $x \leq \text{Length}\epsilon$ by
 - $0: x \leq \epsilon$
 - 2: $\neg x \leq \epsilon \quad \lor \quad \text{Length} x \leq \text{Length} \epsilon$
- 8: $\neg \text{Length} x = 0$ by
 - 1: $\neg \epsilon = x$
 - 4: $\neg \text{Length} x = 0 \quad \lor \quad \epsilon = x$
- 9: $\neg \text{Length} x \leq \text{Length} \epsilon \lor \text{Length} x \leq 0$ by
 - 5: Length $\epsilon = 0$
 - 6: $\neg \text{Length} \epsilon = 0 \quad \lor \quad \neg \text{Length} x \leq \text{Length} \epsilon \quad \lor \quad \text{Length} x \leq 0$
- 10: Length $x \leq 0$ by
 - 7: Length $x \leq \text{Length}\epsilon$
 - 9: $\neg \text{Length} x \leq \text{Length} \epsilon \lor \text{Length} x \leq 0$

```
11: \neg \text{Length} x \le 0 by 
8: \neg \text{Length} x = 0
3: \neg \text{Length} x \le 0 \lor \text{Length} x = 0
```

12:
$$QEA$$
 by 10: Length $x \le 0$

11:
$$\neg \text{Length} x \leq 0$$