Proof of Theorem 008

The theorem to be proved is
$x \preceq \epsilon \quad \rightarrow \quad x=\epsilon$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \preceq(\epsilon)] \quad \& \quad[\neg(x)=(\epsilon)]]$

Special cases of the hypothesis and previous results:
$0: \quad x \preceq \epsilon \quad$ from $\quad \mathrm{H}: x$
1: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
2: $\neg x \preceq \epsilon \vee$ Length $x \leq$ Length $\epsilon \quad$ from $\quad \underline{264}^{->} ; x ; \epsilon$
3: \neg Length $x \leq 0 \vee$ Length $x=0 \quad$ from \quad 57; Length x
4: \neg Length $x=0 \quad \vee \quad \epsilon=x \quad$ from $\quad \underline{001} ; x$
5: Length $\epsilon=0 \quad$ from $\quad \underline{259}$

Equality substitutions:

6: \neg Length $\epsilon=0 \vee \neg$ Length $x \leq$ Length $\epsilon \vee$ Length $x \leq 0$

Inferences:

7: Length $x \leq$ Length ϵ by
$0: x \preceq \epsilon$
2: $\neg x \preceq \epsilon \vee$ Length $x \leq$ Length ϵ
8: \neg Length $x=0 \quad$ by
1: $\neg \epsilon=x$
4: \neg Length $x=0 \vee \epsilon=x$
9: \neg Length $x \leq$ Length $\epsilon \vee$ Length $x \leq 0 \quad$ by
5: Length $\epsilon=0$
6: \neg Length $\epsilon=0 \vee \neg$ Length $x \leq$ Length $\epsilon \vee$ Length $x \leq 0$
10: Length $x \leq 0 \quad$ by
7: Length $x \leq$ Length ϵ
9: \neg Length $x \leq$ Length $\epsilon \vee$ Length $x \leq 0$

11: \neg Length $x \leq 0 \quad$ by
8: \neg Length $x=0$
3: \neg Length $x \leq 0 \vee$ Length $x=0$
12: $Q E A \quad$ by
10: Length $x \leq 0$
11: \neg Length $x \leq 0$

