Proof of Theorem 007

The theorem to be proved is
$a_{1} \oplus c_{1}=a_{2} \oplus c_{2} \quad \& \quad a_{1} \preceq a_{2} \quad \& \quad c_{2} \neq \epsilon \quad \rightarrow \quad c_{1} \neq \epsilon$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad\left[\left[\left(a_{1} \oplus c_{1}\right)=\left(a_{2} \oplus c_{2}\right)\right] \quad \& \quad\left[\left(a_{1}\right) \preceq\left(a_{2}\right)\right] \quad \& \quad\left[\neg\left(c_{2}\right)=(\epsilon)\right] \quad \& \quad\left[\left(c_{1}\right)=(\epsilon)\right]\right]$

Special cases of the hypothesis and previous results:

0: $\quad a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
1: $\quad a_{1} \preceq a_{2} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
2: $\neg \epsilon=c_{2} \quad$ from $\mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
3: $\quad \epsilon=c_{1} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
4: $\neg a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad \vee \quad \neg a_{1} \preceq a_{2} \quad \vee \quad c_{2} \preceq c_{1} \quad$ from $\quad \underline{006} ; a_{1} ; c_{1} ; a_{2} ; c_{2}$
5: $\neg c_{2} \preceq \epsilon \vee \epsilon=c_{2} \quad$ from $\quad \underline{008} ; c_{2}$

Equality substitutions:

6: $\neg \epsilon=c_{1} \quad \vee \quad c_{2} \preceq \epsilon \quad \vee \quad \neg c_{2} \preceq c_{1}$

Inferences:

7: $\neg a_{1} \preceq a_{2} \vee c_{2} \preceq c_{1} \quad$ by
0: $a_{2} \oplus c_{2}=a_{1} \oplus c_{1}$
4: $\neg a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad \vee \quad \neg a_{1} \preceq a_{2} \quad \vee \quad c_{2} \preceq c_{1}$
8: $\quad c_{2} \preceq c_{1} \quad$ by
1: $a_{1} \preceq a_{2}$
7: $\neg a_{1} \preceq a_{2} \quad \vee \quad c_{2} \preceq c_{1}$
9: $\neg c_{2} \preceq \epsilon \quad$ by
2: $\neg \epsilon=c_{2}$
5: $\neg c_{2} \preceq \epsilon \vee \quad \epsilon=c_{2}$
10: $\quad c_{2} \preceq \epsilon \quad \vee \quad \neg c_{2} \preceq c_{1} \quad$ by
3: $\epsilon=c_{1}$
6: $\neg \epsilon=c_{1} \quad \vee \quad c_{2} \preceq \epsilon \quad \vee \quad \neg c_{2} \preceq c_{1}$

11: $\quad c_{2} \preceq \epsilon \quad$ by
8: $c_{2} \preceq c_{1}$
10: $c_{2} \preceq \epsilon \vee \neg c_{2} \preceq c_{1}$
12: $Q E A$ by
9: $\neg c_{2} \preceq \epsilon$
11: $c_{2} \preceq \epsilon$

