Proof of Theorem 006

The theorem to be proved is
$a_{1} \oplus c_{1}=a_{2} \oplus c_{2} \quad \& \quad a_{1} \preceq a_{2} \quad \rightarrow \quad c_{2} \preceq c_{1}$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad\left[\left[\left(a_{1} \oplus c_{1}\right)=\left(a_{2} \oplus c_{2}\right)\right] \quad \& \quad\left[\left(a_{1}\right) \preceq\left(a_{2}\right)\right] \quad \& \quad\left[\neg\left(c_{2}\right) \preceq\left(c_{1}\right)\right]\right]$

Special cases of the hypothesis and previous results:

0: $\quad a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
1: $\quad a_{1} \preceq a_{2} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
2: $\neg c_{2} \preceq c_{1} \quad$ from $\quad \mathrm{H}: a_{1}: c_{1}: a_{2}: c_{2}$
3: $\neg a_{1} \preceq a_{2} \vee \quad$ Length $a_{1} \leq$ Length $a_{2} \quad$ from $\quad \underline{264}{ }^{->} ; a_{1} ; a_{2}$
4: $\quad c_{2} \preceq c_{1} \quad \vee \neg$ Length $_{2} \leq{\text { Length } c_{1} \quad \text { from } \quad \underline{264}{ }^{\leftarrow} ; c_{2} ; c_{1}, ~}_{\text {L }}$
5: $\quad\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{1} \oplus c_{1}\right) \quad$ from $\quad 260 ; a_{1} ; c_{1}$
6: $\quad\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=$ Length $\left(a_{2} \oplus c_{2}\right) \quad$ from \quad 260; $a_{2} ; c_{2}$
7: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\operatorname{Length} c_{2}\right)=\left(\operatorname{Length} a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \quad \vee \quad \neg \operatorname{Length} a_{1} \leq \operatorname{Length} a_{2}$ $\vee \quad$ Length $c_{2} \leq$ Length $c_{1} \quad$ from $\quad \underline{005} ;$ Length $a_{1} ;$ Length $c_{1} ;$ Length $a_{2} ;$ Length c_{2}

Equality substitutions:

8: $\neg a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad \vee \quad\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee$ $\neg\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{1} \oplus c_{1}\right)$

9: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee \quad\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=$ $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \vee \neg \operatorname{Length}\left(a_{2} \oplus c_{2}\right)=\left(\operatorname{Length} a_{1}\right)+\left(\operatorname{Length} c_{1}\right)$

Inferences:

10: $\left(\right.$ Length $\left.a_{1}\right)+\left(\operatorname{Length} c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee \quad \neg\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=$ Length $\left(a_{1} \oplus c_{1}\right) \quad$ by

0: $a_{2} \oplus c_{2}=a_{1} \oplus c_{1}$
8: $\neg a_{2} \oplus c_{2}=a_{1} \oplus c_{1} \quad \vee \quad\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee$ $\neg\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{1} \oplus c_{1}\right)$

11: Length $a_{1} \leq$ Length $a_{2} \quad$ by
1: $a_{1} \preceq a_{2}$
3: $\neg a_{1} \preceq a_{2} \quad \vee \quad$ Length $a_{1} \leq$ Length a_{2}
12: \neg Length $c_{2} \leq$ Length c_{1} by
2: $\neg c_{2} \preceq c_{1}$
4: $c_{2} \preceq c_{1} \vee \neg$ Length $c_{2} \leq$ Length c_{1}
13: $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad$ by
5: $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=$ Length $\left(a_{1} \oplus c_{1}\right)$
10: $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee \quad \neg\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left._{1}\right)=$ Length $\left(a_{1} \oplus c_{1}\right)$

14: $\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\operatorname{Length} a_{1}\right)+\left(\operatorname{Length} c_{1}\right) \vee \neg\left(\operatorname{Length} a_{1}\right)+\left(\operatorname{Length} c_{1}\right)=$ Length $\left(a_{2} \oplus c_{2}\right) \quad$ by

6: $\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=$ Length $\left(a_{2} \oplus c_{2}\right)$
9: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right) \quad \vee \quad\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=$ $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \vee \neg\left(\operatorname{Length} a_{1}\right)+\left(\operatorname{Length} c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right)$

15: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \quad \vee \quad$ Length $c_{2} \leq$ Length c_{1} by

11: Length $a_{1} \leq$ Length a_{2}
7: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\operatorname{Length} a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \vee \neg$ Length $a_{1} \leq \operatorname{Length} a_{2}$
\checkmark Length $c_{2} \leq$ Length c_{1}
16: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \quad$ by
12: \neg Length $c_{2} \leq{\text { Length } c_{1}}$
15: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \vee$ Length $c_{2} \leq$ Length c_{1}
17: $\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \quad$ by
13: $\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right)$
14: $\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left.c_{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right) \quad \vee \quad \neg\left(\right.$ Length $\left.a_{1}\right)+$
$\left(\right.$ Length $\left.c_{1}\right)=\operatorname{Length}\left(a_{2} \oplus c_{2}\right)$
18: $Q E A$ by
16: $\neg\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left._{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left.c_{1}\right)$
17: $\left(\right.$ Length $\left.a_{2}\right)+\left(\right.$ Length $\left._{2}\right)=\left(\right.$ Length $\left.a_{1}\right)+\left(\right.$ Length $\left._{1}\right)$

