Proof of Theorem 003b

The theorem to be proved is

 ϵ begins with a_1 & ϵ begins with a_2 & $a_1 \leq a_2 \rightarrow a_2$ begins with a_1

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(\epsilon) \text{ begins with } (a_1)]$ & $[(\epsilon) \text{ begins with } (a_2)]$ & $[(a_1) \preceq (a_2)]$ & $[\neg (a_2) \text{ begins with } (a_1)]]$

Special cases of the hypothesis and previous results:

- 0: ϵ begins with a_1 from H: a_1 : a_2
- 1: ϵ begins with a_2 from H: $a_1:a_2$
- 2: $\neg a_2$ begins with a_1 from H: $a_1:a_2$
- 3: $\neg \epsilon$ begins with $a_2 \lor \epsilon = a_2$ from <u>002</u>; a_2

Equality substitutions:

4: $\neg \epsilon = a_2 \lor \neg \epsilon$ begins with $a_1 \lor a_2$ begins with a_1

Inferences:

5: $\neg \epsilon = a_2 \lor a_2$ begins with a_1 by 0: ϵ begins with a_1 4: $\neg \epsilon = a_2 \lor \neg \epsilon$ begins with $a_1 \lor a_2$ begins with a_1 6: $\epsilon = a_2$ by 1: ϵ begins with a_2 3: $\neg \epsilon$ begins with $a_2 \lor \epsilon = a_2$ 7: $\neg \epsilon = a_2$ by 2: $\neg a_2$ begins with a_1 5: $\neg \epsilon = a_2 \lor a_2$ begins with a_1 8: QEA by 6: $\epsilon = a_2$ 7: $\neg \epsilon = a_2$