Proof of Theorem 003b

The theorem to be proved is
ϵ begins with $a_{1} \& \epsilon$ begins with $a_{2} \& a_{1} \preceq a_{2} \rightarrow a_{2}$ begins with a_{1}
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\left[\left[(\epsilon)\right.\right.$ begins with $\left.\left(a_{1}\right)\right] \quad \& \quad\left[(\epsilon)\right.$ begins with $\left.\left(a_{2}\right)\right] \quad \& \quad\left[\left(a_{1}\right) \preceq\left(a_{2}\right)\right] \quad \& \quad\left[\neg\left(a_{2}\right)\right.$ begins with $\left.\left.\left(a_{1}\right)\right]\right]$

Special cases of the hypothesis and previous results:

$\begin{array}{llll}0: & \epsilon \text { begins with } a_{1} \quad \text { from } \quad \mathrm{H}: a_{1}: a_{2} \\ \text { 1: } & \epsilon \text { begins with } a_{2} \quad \text { from } \quad \mathrm{H}: a_{1}: a_{2} \\ 2: & \neg a_{2} \text { begins with } a_{1} \quad \text { from } \quad \mathrm{H}: a_{1}: a_{2} \\ 3: & \neg \epsilon \text { begins with } a_{2} \quad \vee & \epsilon=a_{2} \quad \text { from } & \underline{002 ;} ; a_{2}\end{array}$

Equality substitutions:

4: $\neg \epsilon=a_{2} \quad \vee \neg \epsilon$ begins with $a_{1} \vee a_{2}$ begins with a_{1}

Inferences:

5: $\neg \epsilon=a_{2} \quad \vee \quad a_{2}$ begins with $a_{1} \quad$ by
0: ϵ begins with a_{1}
4: $\neg \epsilon=a_{2} \quad \vee \quad \neg \epsilon$ begins with $a_{1} \quad \vee \quad a_{2}$ begins with a_{1}
6: $\quad \epsilon=a_{2} \quad$ by
1: ϵ begins with a_{2}
3: $\neg \epsilon$ begins with $a_{2} \vee \epsilon=a_{2}$
7: $\neg \epsilon=a_{2} \quad$ by
2: $\neg a_{2}$ begins with a_{1}
5: $\neg \epsilon=a_{2} \quad \vee \quad a_{2}$ begins with a_{1}
8: $Q E A$ by
6: $\epsilon=a_{2}$
7: $\neg \epsilon=a_{2}$

