Proof of Theorem 002

The theorem to be proved is
ϵ begins with $x \quad \vee \quad \epsilon$ ends with $x \quad \rightarrow \quad x=\epsilon$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(\epsilon)$ begins with $(x) \quad \vee \quad(\epsilon)$ ends with $(x)] \quad \& \quad[\neg(x)=(\epsilon)]]$

Special cases of the hypothesis and previous results:

0: ϵ begins with $x \vee \epsilon$ ends with x from $\mathrm{H}: x$
1: $\neg \epsilon=x$ from $\mathrm{H}: x$
2: $\neg \epsilon$ begins with $x \quad \vee \quad x \oplus c=\epsilon \quad$ from $\quad \underline{290}{ }^{\rightarrow} ; \epsilon ; x: c$
3: $\neg \epsilon$ ends with $x \quad \vee \quad a \oplus x=\epsilon \quad$ from $\quad \underline{288}{ }^{\rightarrow} ; \epsilon ; x: a$
4: $\neg x \oplus c=\epsilon \quad \vee \quad \epsilon=x \quad$ from \quad 204; $; x ; c$
5: $\neg a \oplus x=\epsilon \quad \vee \quad \epsilon=x \quad$ from \quad 204; $a ; x$

Inferences:

6: $\quad \neg x \oplus c=\epsilon \quad$ by
1: $\neg \epsilon=x$
4: $\neg x \oplus c=\epsilon \quad \vee \quad \epsilon=x$
7: $\quad \neg a \oplus x=\epsilon \quad$ by
1: $\neg \epsilon=x$
5: $\neg a \oplus x=\epsilon \quad \vee \quad \epsilon=x$
8: $\neg \epsilon$ begins with $x \quad$ by
6: $\neg x \oplus c=\epsilon$
2: $\neg \epsilon$ begins with $x \quad \vee \quad x \oplus c=\epsilon$
9: $\quad \neg \epsilon$ ends with $x \quad$ by
7: $\neg a \oplus x=\epsilon$
3: $\neg \epsilon$ ends with $x \quad \vee \quad a \oplus x=\epsilon$
10: ϵ ends with $x \quad$ by
8: $\neg \epsilon$ begins with x
0: ϵ begins with $x \vee \in$ ends with x
11: $Q E A$ by
9: $\neg \epsilon$ ends with x
10: ϵ ends with x

