Proof of Theorem 002

The theorem to be proved is

 ϵ begins with $x \lor \epsilon$ ends with $x \to x = \epsilon$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) [[(ϵ) begins with (x) \lor (ϵ) ends with (x)] & [\neg (x) = (ϵ)]]

Special cases of the hypothesis and previous results:

0: ϵ begins with $x \lor \epsilon$ ends with x from H:x1: $\neg \epsilon = x$ from H:x2: $\neg \epsilon$ begins with $x \lor x \oplus c = \epsilon$ from $\underline{290}^{\rightarrow};\epsilon;x:c$ 3: $\neg \epsilon$ ends with $x \lor a \oplus x = \epsilon$ from $\underline{288}^{\rightarrow};\epsilon;x:a$ 4: $\neg x \oplus c = \epsilon \lor \epsilon = x$ from $\underline{204};x;c$ 5: $\neg a \oplus x = \epsilon \lor \epsilon = x$ from $\underline{204};a;x$

Inferences:

6: $\neg x \oplus c = \epsilon$ by 1: $\neg \epsilon = x$ 4: $\neg x \oplus c = \epsilon \quad \lor \quad \epsilon = x$ 7: $\neg a \oplus x = \epsilon$ by 1: $\neg \epsilon = x$ 5: $\neg a \oplus x = \epsilon \quad \lor \quad \epsilon = x$ 8: $\neg \epsilon$ begins with x by 6: $\neg x \oplus c = \epsilon$ 2: $\neg \epsilon$ begins with $x \lor x \oplus c = \epsilon$ 9: $\neg \epsilon$ ends with xby 7: $\neg a \oplus x = \epsilon$ 3: $\neg \epsilon$ ends with $x \lor a \oplus x = \epsilon$ 10: ϵ ends with x by 8: $\neg \epsilon$ begins with x 0: ϵ begins with $x \lor \epsilon$ ends with x11: QEAby 9: $\neg \epsilon$ ends with x 10: ϵ ends with x