Proof of Theorem 000b

The theorem to be proved is

$$x_1 \oplus \epsilon = x_2 \oplus \epsilon \quad \rightarrow \quad x_1 = x_2$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x_1 \oplus \epsilon) = (x_2 \oplus \epsilon)]$$
 & $[\neg (x_1) = (x_2)]]$

Special cases of the hypothesis and previous results:

- 0: $x_2 \oplus \epsilon = x_1 \oplus \epsilon$ from H: x_1 : x_2
- 1: $\neg x_2 = x_1$ from H: x_1 : x_2
- 2: $x_1 \oplus \epsilon = x_1$ from <u>196</u>; x_1
- 3: $x_2 \oplus \epsilon = x_2$ from 196; x_2

Equality substitutions:

4:
$$\neg x_2 \oplus \epsilon = x_1 \oplus \epsilon \quad \lor \quad x_2 \oplus \epsilon = x_1 \quad \lor \quad \neg x_1 \oplus \epsilon = x_1$$

5:
$$\neg x_2 \oplus \epsilon = x_2 \quad \lor \quad \neg x_2 \oplus \epsilon = x_1 \quad \lor \quad x_2 = x_1$$

Inferences:

6:
$$x_2 \oplus \epsilon = x_1 \quad \lor \quad \neg x_1 \oplus \epsilon = x_1 \quad by$$

0:
$$x_2 \oplus \epsilon = x_1 \oplus \epsilon$$

4:
$$\neg x_2 \oplus \epsilon = x_1 \oplus \epsilon \quad \lor \quad x_2 \oplus \epsilon = x_1 \quad \lor \quad \neg x_1 \oplus \epsilon = x_1$$

7:
$$\neg x_2 \oplus \epsilon = x_2 \quad \lor \quad \neg x_2 \oplus \epsilon = x_1$$
 by

1:
$$\neg x_2 = x_1$$

5:
$$\neg x_2 \oplus \epsilon = x_2 \quad \lor \quad \neg x_2 \oplus \epsilon = x_1 \quad \lor \quad x_2 = x_1$$

8:
$$x_2 \oplus \epsilon = x_1$$
 by

$$2: x_1 \oplus \epsilon = x_1$$

6:
$$x_2 \oplus \epsilon = x_1 \quad \lor \quad \neg x_1 \oplus \epsilon = x_1$$

9:
$$\neg x_2 \oplus \epsilon = x_1$$
 by

$$3: x_2 \oplus \epsilon = x_2$$

7:
$$\neg x_2 \oplus \epsilon = x_2 \quad \lor \quad \neg x_2 \oplus \epsilon = x_1$$

10:
$$QEA$$
 by

8:
$$x_2 \oplus \epsilon = x_1$$

9:
$$\neg x_2 \oplus \epsilon = x_1$$