Proof of Theorem 000b

The theorem to be proved is
$x_{1} \oplus \epsilon=x_{2} \oplus \epsilon \quad \rightarrow \quad x_{1}=x_{2}$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad\left[\left[\left(x_{1} \oplus \epsilon\right)=\left(x_{2} \oplus \epsilon\right)\right] \quad \& \quad\left[\neg\left(x_{1}\right)=\left(x_{2}\right)\right]\right]$

Special cases of the hypothesis and previous results:

0: $\quad x_{2} \oplus \epsilon=x_{1} \oplus \epsilon \quad$ from $\quad \mathrm{H}: x_{1}: x_{2}$
1: $\neg x_{2}=x_{1} \quad$ from $\quad \mathrm{H}: x_{1}: x_{2}$
2: $\quad x_{1} \oplus \epsilon=x_{1} \quad$ from $\quad 196 ; x_{1}$
3: $\quad x_{2} \oplus \epsilon=x_{2} \quad$ from $\quad 196 ; x_{2}$

Equality substitutions:

4: $\quad \neg x_{2} \oplus \epsilon=x_{1} \oplus \epsilon \quad \vee \quad x_{2} \oplus \epsilon=x_{1} \quad \vee \quad \neg x_{1} \oplus \epsilon=x_{1}$
5: $\quad \neg x_{2} \oplus \epsilon=x_{2} \quad \vee \quad \neg x_{2} \oplus \epsilon=x_{1} \quad \vee \quad x_{2}=x_{1}$

Inferences:

6: $\quad x_{2} \oplus \epsilon=x_{1} \quad \vee \quad \neg x_{1} \oplus \epsilon=x_{1} \quad$ by
0: $x_{2} \oplus \epsilon=x_{1} \oplus \epsilon$
4: $\neg x_{2} \oplus \epsilon=x_{1} \oplus \epsilon \quad \vee \quad x_{2} \oplus \epsilon=x_{1} \quad \vee \quad \neg x_{1} \oplus \epsilon=x_{1}$
7: $\neg x_{2} \oplus \epsilon=x_{2} \quad \vee \quad \neg x_{2} \oplus \epsilon=x_{1} \quad$ by
1: $\neg x_{2}=x_{1}$
5: $\neg x_{2} \oplus \epsilon=x_{2} \quad \vee \quad \neg x_{2} \oplus \epsilon=x_{1} \quad \vee \quad x_{2}=x_{1}$
8: $\quad x_{2} \oplus \epsilon=x_{1} \quad$ by
2: $x_{1} \oplus \epsilon=x_{1}$
6: $x_{2} \oplus \epsilon=x_{1} \quad \vee \quad \neg x_{1} \oplus \epsilon=x_{1}$
9: $\quad \neg x_{2} \oplus \epsilon=x_{1} \quad$ by
3: $x_{2} \oplus \epsilon=x_{2}$
7: $\neg x_{2} \oplus \epsilon=x_{2} \quad \vee \quad \neg x_{2} \oplus \epsilon=x_{1}$
10: $Q E A$ by
8: $x_{2} \oplus \epsilon=x_{1}$
9: $\neg x_{2} \oplus \epsilon=x_{1}$

