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Classical Hamilton-Jacobi theory

N particles of various masses on a Euclidean
space.

Incorporate the masses in the flat Riemannian
metric m;;, the mass tensor. Then if v* is a veloc-
ity, v; = m;;v’ 1s a momentum.

Kinetic energy: %vi’u@-.

Potential energy: V.

Lagrangian: L = %vivi - V.

Position at time ¢ of the configuration: ().

Initial time: ¢.

Final time: ¢;.

Hamilton’s principal function:

S(x,t) = —/t 1 L(&(s)) ds.

Substantial derivative (derivative along trajec-
tories):

O .
D= — 'V;.
at—l—vv

Then DS = L.



Vector field: v with % = 9.

Principle of least action in Hamilton-Jacobi
theory: v is a critical point for S, for unconstrained
variations.

That is, let v’ be another vector field, let
ov = v’ — v, and denote by a prime quantities with
v replaced by v’. Then

D(S"—-S)=D'S"-DS+ (D-D")S'
=L — L —60'V,; 5’
=L — L —6v'V;S 4 o(dv).

Now

L' — L = v;0v" 4 o(dv),

t1 |
S — 8= —/ (v; — V;5)ov" ds + o(dv).
t

Since this is true for all variations, we have the
Hamilton-Jacobi condition:



Together with DS = L; i.e.,

9 | 1 .
a—i + 'V, S = 5’022)@ -V,

this gives the Hamilton-Jacobi equation

S 1_,
St VViS £V =0

If we take the gradient we obtain Newton’s
equation F' = ma.



Stochastic Hamilton-Jacobi theory

Following Guerra and Morato, construct a
conservative Markovian dynamics for a Markov
process £.

Wiener process (Brownian motion) w with
Edw" (t)dw;(t) = hdt.
Kinematics:
dé(t) = b(&(t), t)dt + dw(t).

Dynamics: 0E [ Ldt = 0 (heuristically).

The trajectories are non-differentiable, so what
is the meaning of

1d¢ d¢;
2 dt dt

in the Lagrangian L7



Let dt > 0 and d&(t) = £(t + dt) — £(t), so %

is a quotient, not a derivative.

1d&* dg;
E—- — 1).
Compute SWTEPT up to o(1)

. t+dt . .
d¢' = / b’ (f(r), r) dr + dw”.
t

Note: dw is of order dt!/2.

de¢t = /tt+dt b (g(t) + /tT b(&(s), 8)ds + w(r) — w(t), r) dr

+ dw®
= b'dt + Vipb'W* 4 dw" + O(dt?)

where
t+dt
Wk = /t [w” (r) — wF(t)] dr.

Therefore



1 . 1 . . .
§dgzdgz- — ibzbidt + b'dw;dt + Vb Wk dw;

1
+ §dw’dwi + o(dt?).

Now

t+dt h
EW*dw,; = hcsf/ (r —t)dt = 5657
t

so Vib'Wk = %Vibi.
The term b*dw;dt is singular, of order dt3/2,

but its expectation is 0.

Finally, Edw'dw; = %ndt. Hence we have the
sought-for result:
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h n
The singular term 57 is a constant, not de-

pending on the trajectory, and it drops out of the
variation.

Let

1 . B
Ly = =bib;+ =V;b' —
v =i+ SV =V

and

IzElqua@ym

Let 6b be a vector field, ¥ = b + db, and as
before denote by primes quantities with b replaced
by b'. Let & satisfy

de'(t) = b'(€'(t), t)dt + dw(t)

with £'(t) = £(t) for the initial time t.

Definition: £ is critical for L in case

I' — I =0(db).



Stochastic Hamilton’s principal function:

S(x,t) = _Em’t/t 1 Ly(&(s),s)ds.

Then
DS — L_|_

where now D is the mean forward derivative:

pf = Jin B (7).

dt—0+ dt
As before,

D(S' — 8)=D'S'— DS+ (D — D)’
=L — L, —6b"V;S + o(b).
Now
: h :

and

(%)
t1 h '
[’—[:E/ (bz—sz+§vz> 5bzd8—|—0(5b)
t



Digression on Markovian kinematics:

Markov process: given the present, past and
future are independent.

The two directions of time are on an equal
footing.

In addition to the forward drift b there is the
backward drift b.,.

b+ b, :
V= current velocity,
b - b* . .
U = 5 osmotic velocity.

Let p be the probability density of £&. Then

Ov

e = —V(vp) current equation,
ou hVp . :

— = —— osmotic equation.
at 2 p

End of digression.
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The equation (*), namely
/ h h 1
I'—-1=E bi—VZ-S+§V7; ob" ds + o(6b),
t

is awkward because it involves V;0b'. Integrate by
parts:

Since b — u = v,

t1 |
I’—I:E/ (v; — V;.5)db" ds + o(db).
t

This is true for all variations, so £ is critical
for L if and only if the stochastic Hamilton-Jacobi
condition holds:
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Let

h
R — 5 lOg P,
SO ' .
V'R =u".

If we write out DS = L, and express every-
thing in terms of R and S, we obtain the stochastic
Hamilton-Jacobi equation:

1 h
(1) %—f —V SV;S+V — —VZRV R— —AR— 0.
Ov
Expressing the current equation 5 — —V(vp)
in terms of R and S we obtain:
h
(2) %—}:—I—VRVS—I— —AS = 0.

These two equations are a system of coupled
nonlinear partial differential equations expressing
necessary and sufficient conditions for a Markov
process to be critical.

How can we solve them?
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Let
W) = 6%(R—|—z’8)‘

Then the system is equivalent to the Schrodinger
equation

oy i h
5= [—§A+V] b,
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magnetic fields

Riemannian manifolds

spIn

Bose-Einstein and Fermi-Dirac statistics
existence of finite-energy Markov processes
momentum

interference
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Non-locality

Consider two particles on R' with initial wave
function

0) = 6—%0_1(0)33-:5
0(0) = =
where
1 1 -1
’ (O)_(—1 2)
and

The z! and z? axes are unrelated; the par-
ticles may be separated by an arbitrarily large
amount a.

At time 0, turn on a linear restoring force
(harmonic oscillator with circular frequency w) for
the second particle. Then the particles are dynami-
cally uncoupled.
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Since the particles are very widely separated
and dynamically uncoupled, we should expect that

E¢ (4)€(0)

does not depend on w.

In fact it does not to fourth order in ¢, but
nevertheless the trajectory of the first particle is
immediately affected by the choice of w in a far
distant place.

For me this is unphysical, especially since the
effect does not depend on the separation a.
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A wrong prediction

Comnsider two harmonic oscillators, about two
widely separated points a; and ao, with circular
frequency 1, and let X, be the Heisenberg position
operator, in units of distance from a;, with Heisen-
berg momentum operator F;.

Then

X;(t) = cost X;(0)+sint P;(0)
P;(t) = —sint X;(0) 4 cost P;(0)

for i = 1,2.

Let the Heisenberg state vector 1y be a real
Gaussian centered at (0,0), and write (A) = (¥q, Aty).
Then (X;(t)) = (P;(t)) = 0 since this is true for
t = 0. The operators Xi(t) and X5(s) commute.

Choose 1y so that the correlation (X;(0)X3(0))
is 90%. Thus the oscillators are entangled but dy-
namically uncoupled. The quantum mechanical
correlation function (X;(¢)X2(0)) is periodic of pe-
riod 27 since X (%) is.

Hence (X1(t)X2(0)) = .9 whenever ¢ is a mul-
tiple of 27.
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But let (£1,&2) be the corresponding Markov
process of stochastic mechanics.

This is a diffusion process and it eventually
loses all memory of where it started.

Thus

lim E(&(2mn)&2(0)) =0

n—aoo

whereas

(X1(2mn)X2(0)) = .9.

Here we have an empirical difference between
the predictions of quantum mechanics and sto-
chastic mechanics. Measurements of the position
of the first particle at time ¢ and of the second par-
ticle at time O do not interfere with each other, and
the two theories predict totally different statistics.

Does anyone doubt that quantum mechanics is
right and stochastic mechanics is wrong?
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