
Completed versus Incomplete Infinity
in Arithmetic

by Edward Nelson

Department of Mathematics, Princeton University

The numbers are 0, 1, 2, 3, The numbers form the simplest
infinity, so if we want to understand infinity we should try to understand
the numbers.

Rather than use the symbols 1, 2, etc. originating in India, let us
use the notation of mathematical logic: the numbers are 0, S0, SS0,
SSS0, . . . where S can be read as “successor”. This notation expresses
clearly the idea that the numbers are obtained by counting, one after
the other.

There are at least two different ways of looking at the numbers: as
a completed infinity and as an incomplete infinity. We shall not be far
wrong if we call these the Platonic (P) and the Aristotelian (A) ways.

Now already in this talk I have made a serious error due to a pitfall
of language. I have spoken of P and A as two ways of looking at “the
numbers”. But we shall see that P and A give two different number
systems, not two ways of looking at the same number system.

Let us begin with P, which is the viewpoint of contemporary math-
ematics. The numbers form a completed infinity denoted by N. Let the
variables x, y, and so forth, range over N. The basic property of N is
induction:

Hypotheses:
0 has the property p ;
if x has the property p, then Sx has the property p.

Conclusion:
for all x, x has the property p.

The first hypothesis is the basis and the second is the inductive
step. For a specific number, such as SSS0, we do not need to assume
induction to prove the conclusion from the hypotheses. For suppose that
p(0). Then successively by the inductive step we obtain p(S0), p(SS0),
and finally p(SSS0). Nevertheless, induction is a powerful assumption
and many properties of numbers can be proved only by using induction.
Here is an example.

Let p be the following property of x: there exists a non-zero number
y that is divisible by all non-zero numbers z such that z ≤ x. I claim

1

that every number x has the property p. Certainly 0 has the property p
(let y = S0). Suppose that x has the property p, so that there exists
a non-zero number y′ that is divisible by all non-zero numbers z with
z ≤ x. By induction, we need only prove the inductive step, that Sx
has the property p; that is, that there exists a non-zero number y that
is divisible by every non-zero number z with z ≤ Sx. But this is true:
let y = y′ · Sx and consider any non-zero number z with z ≤ Sx. Then
either z ≤ x, in which case it divides y′ and hence y = y′ ·Sx, or z = Sx,
in which case also it divides y, concluding the proof.

In the early years of the twentieth century Bertrand Russell and
Henri Poincaré exchanged polemics about the nature of induction. For
Poincaré, induction is a logical principle, a kind of infinitely long syllo-
gism. Russell maintained that induction is merely a verbal definition—
the numbers are defined to be those objects for which induction holds.
Neither questioned the legitimacy of induction.

In contemporary mathematics Russell’s viewpoint prevails. The cus-
tomary foundation of mathematics today is set theory, Zermelo-Fraenkel
set theory with the axiom of choice (ZFC). Properties are reified as sets.
The number 0 is defined to be the empty set, the set that has no ele-
ments. For any set x, one defines its successor Sx to be the set whose
elements are the elements of x together with x itself. A set X is said to
be inductive in case 0 is an element of X and whenever x is an element
of X then its successor Sx is also an element of X. The axiom of infinity
of ZFC asserts that there exists an inductive set. Then one proves that
there exists a unique smallest inductive set and one defines N, the set of
all numbers, to be this set.

Expressed verbally, what this amounts to is this. A property is in-
ductive in case it satisfies the basis and the inductive step; an object is
a number in case it has every inductive property. Thus a property that
objects may have, that of being a number, is defined in terms of the col-
lection of all properties that objects may have. This is an impredicative
definition. Impredicativity deeply troubles some thinkers; others find it
unproblematical. Contemporary mathematics is thoroughly impredica-
tive.

As a foundation for arithmetic, this definition leaves something to
be desired. Certainly arithmetic, the theory of numbers, is the most
primitive of all mathematical theories. Yet it is being based on the far
more sophisticated theory of sets. Furthermore, the procedure of reifying
properties as sets—replacing a property, an intensional concept, by the
extensional set of all objects having the property—leads to well-known
contradictions if it is carried out naively, as Russell himself discovered

2

in his famous paradox of the set of all sets that are not elements of
themselves.

Closely related to induction is the construction of numbers by prim-
itive recursion. This is done by specifying the value when y = 0 (the
basis) and then the value for Sy in terms of the value for y (the recur-
sive step). Then, for example, the value when y = SSS0 is determined:
we are given the value for y = 0, from this we obtain the value when
y = S0, and then the value when y = SS0, and finally the value when
y = SSS0. We introduce addition +, multiplication ·, exponentiation ↑,
superexponentiation ⇑, and so forth, as follows:

x + 0 = x, x + Sy = S(x + y);
x · 0 = 0, x · Sy = x + (x · y);
x ↑ 0 = S0, x ↑ Sy = x · (x ↑ y);
x ⇑ 0 = S0, x ⇑ Sy = x ↑ (x ⇑ y);

and so forth. Then

x + y = S . . .Sx with y occurrences of S,
x · y = x + . . . + x with y occurrences of x,
x ↑ y = x · . . . · x with y occurrences of x,
x ⇑ y = x ↑ . . . ↑ x with y occurrences of x,

and so forth. These are primitive recursions. Ackermann showed how
to go beyond primitive recursion. Let us denote +, ·, ↑, ⇑, and so forth,
by F0, F1, F2, F3, and so forth. Then a version of the Ackermann
function is the function A whose value on y is A(y) = y Fy y. This func-
tion is recursive—for any y we have a mechanical procedure specified
for computing A(y)—but it grows far faster than any primitive recur-
sive function. This construction is another example of Cantor’s diagonal
method, which Cantor used to show that the continuum (the real num-
bers) is uncountable, a larger infinity than N, and which was also the
basis of Russell’s paradox and Gödel’s incompleteness theorems.

The general notion of a recursive function is intended to express
the notion of an algorithm. The word algorithm comes from the name
of the author, al’Khwarizmi, of the highly influential treatise Al-Jabr
wa-al-Muqabilah written ca. 820 (and the word algebra itself comes from
the title of the book!). But it was over eleven hundred years before
the problem of defining what is meant by an algorithm—what a re-
cursive function is—was addressed. Ackermann’s procedure showed the
impossibility of giving an explicit syntactical definition of the notion of
a recursive function, for then they could all be listed and the diagonal
construction employed to yield a new recursive function.

3

The problem was solved in three seemingly different ways in the
1930s by Church, Gödel, and Turing (respectively a professor at Prince-
ton University, a permanent member of the Institute for Advanced Study
in Princeton, and a graduate student at Princeton University, I mention
with parochial pride), and the three definitions all turned out to be equiv-
alent. Gödel himself said that Turing’s was the best definition. Turing’s
work laid the theoretical foundation for computers and his paper [6] of
1936 still makes interesting reading, though one must be aware that in
this paper computer means “one who computes”. Turing’s definition
can be described as follows. Consider a computer program (this is a
concrete syntactical object) taking numbers as input. Then it is an al-
gorithm in case for every input it eventually halts and outputs a number
as value (this is an abstract semantic concept). The halting problem is
algorithmically unsolvable; this means that for a general computer pro-
gram there is no way to tell whether or not it is an algorithm other than
to search through all the infinitely many possible inputs and for each
of them patiently to wait—forever if need be—to see whether a value
is output. This is completed infinity with a vengeance! (In one of the
Oz books the Scarecrow says, “We may be trapped here forever!” The
Patchwork Girl asks, “How long is forever?” and the Scarecrow answers,
“That is what we shall soon find out.”)

∗ ∗ ∗
Now let us turn to an Aristotelian (as I am calling it) critique of

these ideas, regarding the numbers as an incomplete infinity. We may
remark that etymologically “incomplete infinity” is a redundant phrase,
since the very word infinite means unfinished.

As we have seen, induction and primitive recursion are based on
the impredicative notion of the numbers as a completed infinity. Let us
introduce the notion of a counting number. This is a primitive notion of
A-arithmetic, and rather than attempt to define it we state the axioms
that we assume for it. These are the basis and the inductive step, namely

0 is a counting number;
if y is a counting number, so is Sy.

This is all that we assume about the notion, and in particular we do not
postulate that all numbers are counting numbers.

Using Arabic numerals (so called although they originated in India
and were transmitted to the West largely by the Persian al’Khwarizmi),
let us ask, given a specific number y defined by primitive recursion, say
y = 2 ⇑ 5 or y = 2 ⇑ 2 ⇑ 5, whether we can prove that it is a counting
number. Now to say that there is an obvious proof in y steps is circular,

4

http://www.abelard.org/turpap2/tp2-ie.asp

because steps are things that are counted, so we can only count the steps
if y is indeed a counting number. Notice that 2 ⇑ 5 = 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 =
2 ↑ 65536 is a super-astronomically large number, and 2 ⇑ 2 ⇑ 5 is
2 ↑ . . . ↑ 2 with that number, 2 ⇑ 5, of occurrences of 2.

We make the following two definitions:

1. x is an additive number in case for all counting num-
bers y, x + y is also a counting number;

2. x is a multiplicative number in case for all additive num-
bers y, x · y is also an additive number.

Then the following theorems hold:

3. If x is an additive number, then x is a counting number.
4. If x is a multiplicative number, then x is an additive

number.
5. If x is a multiplicative number, then x is a counting

number.
6. If x and z are additive numbers, so is x + z.
7. If x and z are multiplicative numbers, so is x + z.
8. If x and z are multiplicative numbers, so is x · z.

The proofs are easy. For 3, let x be an additive number. Apply
the definition 1 to y = 0, which is a counting number. Then x + 0 is a
counting number, but x + 0 = x.

For 4, let x be a multiplicative number. Apply the definition 2 to
y = 1, which is easily seen to be an additive number. Then x · 1 is an
additive number, but x · 1 = x.

Note that 5 is a consequence of 4 and 3.
For 6, let x and z be additive numbers, and let y be any counting

number. By definition 1, we need to show that (x + z) + y is a counting
number. Now z+y is a counting number, by definition 1, so x+(z+y) is
a counting number, again by definition 1. But x + (z + y) = (x + z) + y.

For 7, let x and z be multiplicative numbers, and let y be any
additive number. By definition 2, we need to show that (x + z) · y is an
additive number. Now z + y is an additive number, by definition 2, and
x + z is an additive number, also by definition 2. Hence (x · y) + (z · y)
is an additive number by theorem 6. But (x · y) + (z · y) = (x + z) · y.

For 8, let x and z be multiplicative numbers, and let y be any
additive number. By definition 2, we need to show that (x · z) · y is an
additive number. Now z · y is an additive number, by definition 2, so
x·(z·y) is an additive number, also by definition 2. But x·(z·y) = (x·z)·y.

Now we can prove that 2 ⇑ 5 is a counting number. Let

5

a0 = 2, a1 = a0 · a0, a2 = a1 · a1, . . . , a16 = a15 · a15.

Then a16 = 2 ⇑ 5. It is easily seen that 2 is a multiplicative number.
Applying theorem 8 sixteen times, we see that a1, a2, . . . , and a16 = 2 ⇑ 5
are multiplicative numbers, so 2 ⇑ 5 is a counting number by theorem 5,
concluding the proof. But no one will ever prove that 2 ⇑ 2 ⇑ 5 is a
counting number.

Why can’t we continue the sequence of definitions and theorems?
Suppose we define

9. x is an exponentiable number in case for all multiplica-
tive numbers y, x ↑ y is a multiplicative number.

But then we cannot prove

10. If x and z are exponentiable numbers, so is x ↑ z.

The problem is that exponentiation is not associative, for in general
x ↑ (z ↑ y) 6= (x ↑ z) ↑ y, and we used the associativity of addition
and multiplication to prove theorems 6 and 8. In fact, one can prove
the following: there does not exist a property p for which it is possible
to prove that if p(x) then x is a counting number and that if p(x) and
p(z) then p(x ↑ z). This theorem is not easy; it uses the deep theorem
of Hilbert and Ackermann on quantifier elimination. See Chapter 18 of
the author’s Predicative Arithmetic [4].

In short, from an A point of view, exponentiation of numbers is not
a well-defined concept. Consequently, A-mathematics is much weaker
than P-mathematics. For example, the theorem on divisibility that we
proved by induction cannot be established. Nevertheless, A-mathematics
is worth pursuing for several reasons. One is that a truly surprising
amount of advanced mathematics can be developed from this point of
view with great simplification of the technical tools involved; see the
author’s Radically Elementary Probability Theory [5].

Another reason for developing A-mathematics is its connection with
problems of computational complexity, one of the most active fields of
mathematics and theoretical computer science. We examine this con-
nection now.

Turing, Church, and Gödel answered—provided one accepts N as
a completed infinity—the question “what is an algorithm?”. With the
advent of digital computers the question arose, “what is a feasible al-
gorithm?”. A consensus among students of computational complexity
emerged, that the right definition is a polynomial-time function. These
are the functions such that there exist a Turing machine (computer pro-
gram) and a polynomial π such that for any number y the program halts

6

http://www.math.princeton.edu/~nelson/books/pa.pdf
http://www.math.princeton.edu/~nelson/books/rept.pdf

and yields a value after at most π(log y) steps. This is a complicated
definition that at first sight seems rather arbitrary. But Bellantoni and
Cook [1] [2], and also Leivant [3], gave an equivalent definition, which
can be described as follows.

Consider again primitive recursion. We want to define F (x, y), so
we specify a value when y = 0 and then specify a value for F (x, Sy) in
terms of x and the value for F (x, y):

F (x, 0) = G(x), F (x,Sy) = H
(
x, F (x, y)

)
.

Here G and H are given in terms of 0, S, and previously defined functions.
Then we have

F (x, 0) = G(x),

F (x, S0) = H
(
x, F (x, 0)

)
= H

(
x, G(x)

)
,

F (x, SS0) = H
(
x, F (x, S0)

)
= H

(
x, H

(
x, G(x)

))
,

F (x,SSS0) = H
(
x, F (x, SS0)

)
= H

(
x, H

(
x,H

(
x,G(x)

)))
,

and so forth all the way up to the value of F (x, y).
For this to make sense, y must be a counting number, since the

definition is a step-by-step construction from 0 to S0, to SS0, . . . , and
finally to y, but even if y is a counting number we do not know that the
value F (x, y) is itself a counting number (unless we make the Platonic
postulate that all numbers are counting numbers). A predicative recur-
sion is a primitive recursion in which all the recursions are over counting
numbers only.

Let us see how this works. There is no problem with addition:

x + 0 = x, x + Sy = S(x + y).

This makes sense for any number x and any counting number y. Now
suppose that both x and y are counting numbers. Then there is no
problem with multiplication:

x · 0 = 0, x · Sy = (x · y) + x

since we have predicatively defined the sum of any number, such as x ·y,
and any counting number, such as x. These are examples of predicative
recursion. But exponentiation is impredicative. In the construction

x ↑ 0 = S0, x ↑ Sy = x · (x ↑ y)

7

ftp://ftp.cs.toronto.edu/pub/reports/theory/cs-92-264.ps.Z

the number x ↑ y is not known to be a counting number—but the pred-
icative recursion giving multiplication is predicatively defined only when
the second argument is a counting number. And indeed, exponentiation
is infeasible.

Bellantoni and Cook, and Leivant, prove that a function is a poly-
nomial-time function (a feasible algorithm) if and only if is is constructed
by predicative recursion. This is a simple and beautiful characterization:
there is nothing concerning Turing machines or polynomials in this de-
scription, but it is equivalent to the complicated definition given earlier.

∗ ∗ ∗

In conclusion, regarding the numbers as an incomplete infinity of-
fers a viable and interesting alternative to regarding the numbers as a
completed infinity, one that leads to great simplifications in some ar-
eas of mathematics and that has strong connections with problems of
computational complexity.

The two ways, P and A, of regarding numbers lead to different
number systems. What is a finite number for P is not necessarily a
finite number for A. In contemporary mathematics, the notion of finite is
defined in terms of the completed infinity N. There is no clear concept of
the finite in terms of which the infinite can be defined as not-finite. One
goes in the opposite direction in contemporary, Platonic, mathematics
and defines the finite as not-infinite.

Perhaps we should hold an interdisciplinary conference on the finite.
As Horatio said, “There are fewer things in heaven and earth, Hamlet,
than are dreamt of in your philosophy.”

References

[1] Stephen Bellantoni and Stephen Cook, “A new recursion-theoretic
characterization of the poly-time functions”, Computational Complexity,
2:97–110, 1992.

[2] Stephen Bellantoni, Predicative Recursion and Computational Com-
plexity, Ph.D. Thesis, University of Toronto, 1992.
ftp://ftp.cs.toronto.edu/pub/reports/theory/cs-92-264.ps.Z

[3] Daniel Leivant, “Ramified recurrence and computational complex-
ity I: Word recurrence and poly-time”, in Peter Cole and Jeffrey Rem-
mel, editors, Feasible Mathematics II, Perspectives in Computer Science,
pages 320-343, Birkhauser-Boston, New York, 1994.

[4] Edward Nelson, Predicative Arithmetic, Mathematical Notes #32,
Princeton University Press, Princeton, New Jersey, 1986.

8

ftp://ftp.cs.toronto.edu/pub/reports/theory/cs-92-264.ps.Z

http://www.math.princeton.edu/~nelson/books/pa.pdf

[5] —, Radically Elementary Probability Theory, Annals of Mathematics
Studies, Number 117, Princeton University Press, Princeton, New Jersey,
1987.
http://www.math.princeton.edu/~nelson/books/rept.pdf

[6] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Soci-
ety, Series 2, 42, pp. 230–265, 1936. Errata in 43, pp. 544–546, 1937.
http://www.abelard.org/turpap2/tp2-ie.asp

9

http://www.math.princeton.edu/~nelson/books/pa.pdf
http://www.math.princeton.edu/~nelson/books/rept.pdf
http://www.abelard.org/turpap2/tp2-ie.asp

