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I. FLOWS

In classical mechanics the state of a physical system is repre-
sented by a point in a differentiaﬁle manifold M and the dynamical
variables by real functions on M . In quantum mechanics the states are
given by rays in a Hilbert space ?#‘ and the dynamical variables by self-
adjoint operators on 72* . In both cases motion is represented by a flow;
that is, a one-parameter group of automorphisms of the underlying struc-
ture (diffeomorphisms or unitary operators).

The infinitesimal description of motion is in the classical case
by means of a vector field and in quantum mechanics by means of a self-
adjoint operator One of the central problems of dynamics is the
integration of the equations of motion to obtain the flow, given the

infinitesimal description of the flow.

1. Differential calculus

In recent years there has been an upsurge of interest in infinite
dimensional manifolds. The theory has had important applications to
Morse theory, transversality theory, and in other areas. It might be
thought that an infinite dimensional manifold with a smooth vector field
on it is a suitable framework for discussing classical dynamical systems
with infinitely many degrees of freedom. However, classical dynamical
systems of infinitely many degrees of freedom are usually described in
terms of partial differential operators, and partial differential

operators cannot be formulated as everywhere-defined operators on a
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n

Banach space. We will be concerned only with finite dimensional mani-
folds. Despite this, I will begin by discussing the general case. I do
this for two reasons: because the theory is useful in other branches of
mathematics and because the fundamental concepts are clearer in the
general context.

Iet E be a real Banach space. That is, E 1is a real vector
space with a function x ann> ”x” mapping E into the real numbers IR
such that [xll >0, x| = 0 only if x =0, laxl = |alllxl ,

Hx+y“ < Hx“ + Hy“ , and E 1is complete: 1if Hxn-me —> 0 there is

an x in E with ”xn-x” —> 0 . For example, E may be an
s-dimensional Euclidean space B%S in the norm Hx” = (xi +.o..t Xi)% .
If F 1is another Banach space we denote by L(E,F) the Banach space
of all continuous linear mappings of E into F in the norm

lall = suptllaxl: I/ <1} . We abbreviate L(E,E) by L(E)

Iet U be an open subset of the Banach space E , and let x
be in U A function f: U —> F (where F is a Banach space) is

said to be (Fréchet) differentiable at x in case there is an element

Df(x) of L(E,F) such that
f(x+y) = £(x) + Df(x)y + oly) ,

where o(y) 1is a function defined in a neighborhood of O such that
lo)I/lyl — 0 as y —= 0 with y # 0 . It is clear that Df(x)
is unique if it exists. It is called the (Fréchet) derivative of f

at x . The function f: U —> F is called differentiable in case it

1 .
is differentiable at all points x in U , and it is called C in

case it is differentiable and x ~an> Df(x) is continuous from U to

L(B,F) . If f is cl then Df is a function from U into the

. 1
Banach space L(E,F) , so it makes sense to ask whether Df 1s C .



1. DIFFERENTIAL CALCULUS 3.

The function f is said to be Cc in case f is Cl and Df is Cl

and, by recursion, f is said to be Ck in case f 1is Cl and Df

. k-1 . . s .
is C . (A trivially eguivalent definition is that f 1is Ck in

case f 1is Ck-l and Dk_lf is Cl . Sometimes one definition and

sometimes the other suggests the more convenient way to organize an
induction proof to show that £ 1is Ck ) Similarly, we define I +to

be k times differentiable in case it is differentiable and Df is

k-1 times differentiable (or equivalently, in case it is k-1 times
differentiable and D' Uf is differentiable). Notice that if f is
differentiable at x it is continuous at x . Consequently a differ-
entiable function is continuous, and a k times differentiable function
is ot

Let El""’En be Banach spaces, and consider their Cartesian
product El XX En . It is possible to give this a Banach space
structure by defining addition and scalar multiplication componentwise
and giving an element the norm which is the sum of the norms of its
components. This Banach space 1s denoted by El S...0 En and called

the direct sum of the Banach spaces E .,En . FElements of it are

100
denoted by X @i..@9xn , Where X, is in Ei . Frequently. we wish to
consider multilinear forms on El X .. X En ; that is, functions on

El X. .. X En which are linear in each variable separately. If f 1is
also a Banach space, we let L<E1 Xoo o X En’F) be the Banach space of
all continuous multilinear forms on E., X...X En with values in F ,

1

with the norm
lall = sup{”A(yl,---;yn)i ”yl”;-n;”yn” <1} .

This Banach space may be identified with the Banach space
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L(E,--»LE _,LE,F))...)

under the identification which takes an element A of the latter into

the form given by
Alyysemyy) = (Coay)) vy vy -

If By = ... =E =E, ve abbreviate L(E, X...XE_,F) by LNE,F)
The set of symmetric elements of it is denoted by L:ym(E,F) . If A

is in L(B, X...X En,F) we denote the value A(yl,...,y ) by

1 n

Ay SV Also, if y is in E then y" means (y,...,y) n times,

N
so that Ay" is defined if A 1is in LNE,F) . If f: U—F (with

U open in E) is k times differentiable then Dkf takes values in

I*E,F) .

Theorem 1 (product rule). let E, F

1’ F2 , and G be Banach

spaces, let U be open in E , let f: U —> Fl and g: U —= F2 be

k ) .
¢, let (zl,zg) ~n> z) 0z, be in L(F1 X F

1 —_—

2,G) and define f-g EX

(£:@)(x) = £(x)-g(x) . Then f-g: U—>G is C° and

(1) D(f-g)(x)y = DE(x)y-g(x) + £(x)-Dg(x)y .

Proof. Suppose f and g are Cl . Then

f(x+y) = £f(x) + DE(x)y + o(y)
g(x+y) = g(x) + Deg(x)y + o(y)
so that

fx+y)-glx+y) = £(x)-g(x) + DE(x)y-g(x) + £(x)-Dg(x)y + oly) -

Thus f-g is ¢t and (1) nolds, so that the theorem is proved for k=1.

k-1
Suppose the theorem to be true for k-1 , and let f and g be C .
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Then (1) holds. The mapping u: L(E,Fl) X F, —> L(E,G) given by

2

(A,z) > B, where By = Ay-z , is continuous and bilinear. Now Df

and g are k-t » 80 by the theorem for k-1, x ~nnd> u(Df(x),s8(x))

-1
is Ck , and similarly for the other term. Therefore D(f'g) is

Ck-l , so f-g is Ck . This concludes the proof.

The same proof shows that the theorem with "Ck" replaced by

"k times differentiable” is true.

Theorem 2 (chain rule). ILet E, F, and G be Banach spaces,

let U be open in E, let V Dbe open in F , and let f: U —V
and g: V—= G be Ck - Then gof is Ck and
(2) D(go£)(x) = Dg(£(x))Dr(x)
1
Proof. Suppose f and g are C . Then
f(xty) = £(x) + DE(x)y + o(y) ,

(gof)(x+y) = g(£{x+y))

It

g(£(x)) + pg(r(x))(pf(x)y + oly)) + o(Df(x)y + oly))

1

g(£(x)) + Dg(£(x))pf(x)y + oly)

Hence gof is Cl and (2) holds. Thus the theorem holds for k

1l
-

Suppose the theorem to be true for k-1, and let £ and g be C

- 1 - -
Then Dg and [ are Ck L , so Dg°f is CK ° . Also Df 1is Ck 1.

The mapping of L(F,G) X L{(E,F) into L(E,G) which takes two linear

operators into thelr product is continuous and bilinear, so by

Theorem 1, (Deof)(Df) is 1 . By (2), therefore, D(gof) is

Ck-l and ge°f 1is Ck , which completes the proof.

. . k
The following formulas are easily proved by induction, for C
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functions f and g :

K ko a k-q
D (f-g)(x)yl ey T L 2D f(x)yi cee vy, D T e(x)y. ... . s
q=0 1 a J1 Ik-q

where the inner sum is over all (g) partitions of y,,...,¥, into

two sets with i, <, .. < 1q and dq < L.< Jk_q » and

k

D (g ) (x)y - ¥y =

k T r r

1 1 1) 2 2 2

2 = pg(£(x))D g(x)y§ )...yi )D g(x)y§ )...yi )...D qg(x)y§q)...y§q),
q=1 1 2
where the inner sum is over all k!/rlf...rq! partitions of NETRRETI N

into g sets with rl,re,.u,rq elements and the natural ordering in
each set.

Iet us define

4., k-q ] . ~K-d
(D*f'D gXx)yl...yk =D f(x)yl...yq D g(x)yq+l...yk
and
r T T
.52 q -
(D "g'D “g...D g)(x)yl...yk =
T r T
1 2 q
D glx)y,...y_ D “glx)y ..y ...D “glx)y oy
1 rl rl+1 rl+r2 rl+"'rq-1+l k

We shall see later that if f 1is Ck then Dkf is symmetric. ILet us
denote by Sym the symmetrizing operator; that is, if ¢ € Lk(E,F) then

. k . R
Sym @ in Lsym(E,F) is defined by

(Sym w)(yl,...,yk) = %T f w(yn(l)""’yﬁ(k)) )

where the summation is over all permutations =« of 1,...,k . Then

we may write
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k

k k k-
D(f-g) = Sym =% (q)qu . qg s
g=0
k r r r
k !
D'(gef) = Sym = z ;x—k—;'T (qu)og-D lg-D 2g...D 9 .
q=1 rl+...+rq:k 177 g’

(The formulas on p.3 of [6] should be corrected to take symmetrization
into account.)

The following is another proof of a theorem of Abraham [6, p.6].
By o(yk) we mean a function such that o(yk)/”y”k —>0 as y —0

with y £ 0 .

Theorem 3 (converse of Taylor's theorem). Let E and F Eg

Banach spaces, let U be open in E , and suppose that f: U — F

satisfies

ay(x) a (x)

(3) fx+y) = ao(x) + al(x)y i AR b A o(yk)

where the aj(x) are in Lgym(E,F) and each 8, is continuous. Then

£ is ¢ ana a, = DIf for § = 0,1,...,k .
Proof. For k =1 this is the definition. Suppose the theorem
-1
is true for k-1 . Then in (3), since (ak(x)/k!)yk = o(yk ) , we know
that a, - p)f for § =0,1,...,k-1 . Now let us expand F{x+y+z) in

two different ways:

f(xryrz) = T(x+y) + DE(xey)z +.. .+ ﬁl_lj_ DF Loy )25t
+ ilif_y) K+ o(2N)

f(xty+z) = £(x) + DE(x)(y+z) +...+ ﬁ DL (x) (yz) KT
+ %) (y+2)% + ol (y+2)%) .

k!
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Fix x and restrict 2z so that %Hy” < ”Z” < %”y” . Then it does not
matter whether we write o(zk), o((y+z)k), or o(yk) .. Subtract the

two equations, collecting coefficients of 2z and denoting the coeffi-

cient of 29 by gj(y) . Then

(%) go(v) + g (y)z +.. o4 gk_l(y)zk'l + gk(y)zk = o(y™)

Now

gk(y)zk = ﬁf[ak(X+y)- ak(X)Jzk ,

and by the continuity of ak this is o(yk) , SO we may drop this term.

We claim that each term separately in (4) is o(yk) . To see this, let

A -..,Kk be distinct numbers, and replace z by Xiz for i=1,...k.

l)

In this way we obtain k equations which we write as

k-1
1 Kl cee Kl “go(y)

k-1 _
PEA- SRR g, (y)z N
N k-1 : k-1
ION e N g, l(y)z

Since the xi are distinct, the matrix is invertible (it is the Van-

dermonde matrix with determinant I (Aj-ki)) .  Therefore each
. 1<3
gj(y)zl is o(yk) . In particular, this is true for j = k-1 . But

(and here we use the symmetry of ak)

k-1 k-1 ka (x)y
kel | D e(xry)  DEUE(x) MY | k-l
g ¥z = 1T -~ &1 -~ & z ‘

Therefore the term in brackets is o(y) . By definition of the deriv-

ative, this means that Dkf(x) = ak(x) , and since a  is continuous,

f 1is Ck . This completes the proof.
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So far what we have done would be valid in the more general con-
text of a normed linear space over a valued field of characteristic O .
Consider however the function f: @ — @ dJdefined as follows. Iet €,

be a sequence of irrational numbers decreasing to 0 , and let £(0)=0,

f(x) =a ; e, < x| <e xeQq,

n+l ’

where the a ~are rational numbers so chosen that £(x) = o(x) but
not f(x)==o(x2) . Then f is C° as a function from @ to @ (in
the sense of definitions analogous to those given above for IR) since
Df = 0, but Taylor's theorem is not satisfied at x = 0 . Also, f is
not locally constant even though Df = O . (A function f on a topo-
logical space is locally constant in case every point x has a neigh-
borhood V such that f(y) :‘f(x) for all y din V . It follows
that a locally constant function is constant on each connected component
of the space.) It is not the incompleteness of @ which causes the
trouble in the above example, but the fact that @Q is not locally con-
nected. To proceed further we must make substantial use of the fact

that we are working over the real number field.

Theorem 4. Iet E and F be Banach spaces, let U be open

in E, let f: U —F be differentiable, and suppose that Df = O .

Then f 1s locally constant.

Proof. Iet x be in U and let a > 0 be so small that the
open ball V with center x and radius a is contained in U . ILet
xty be in V and let ¢: [0,1] — V be defined by ¢(t) = x+ty .
Thus ¢ 1is the line segment joining x and xty . ILet £> 0 and

let
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s, = (t € [0,1]: le(x)- £(a(s))] < es for 0<s <t} .

This 1s a closed set containing O . It is also open, for if to € S€

then

f(@(to+h)) = f(x~+(to+h)y) = f(xa—toy)4—th(x4-tOy)y+-o(hy)
- £(9(t,)) + o(n) ,
and by the triangle inequality, |f(x) - f(®(to+h))” < e(tyth) for n
small enough. Since [0,1] 1is connected (this is an immediate conse-
quence of the least upper bound property of IR) it follows that
S€ = [0,1] . Therefore |f(x) - £(x+y)l| < g . Since g is arbitrary,
f{x) = f(x+y) . QED
The quickest approach to integration of continuous functions
is the following (see [4]). Iet I = [a,b], -w<a<b<w, and let
F be a Banach space. A step function f: I — F 1is a function which
for some partition a =a. <a, <...<a_ =1b is constant on each inter-

0] 1 n

val (a,,a, .) . If f: I—>=TF is a step function, define fz £(t)dat

1771+l
in the obvious way. Iet [fl| = sup{llz(t)]: a <t < b}, and let @ e
the completion of the step functions in this norm. An element of B is
a function, since uniform convergence implies pointwise convergence. A
function in & is called a regulated function from I to F . A proof
quite analogous to the proof of Theorem 4 shows that every continuous
function from I to F is regulated. Since ”fz £(t)atll < (p-a)lzll ,
the linear functional f ~nnd fz £(t)dt extends by continuity to R
Thus we have defined the integral of every regulated, and in particular

every continuous, function from I to F . This is not quite as

general as the Riemann integral, which is defined for some non-regulated
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functions, but if a more general integral is needed it 1s preferable to

develop the Bochner integral (which is the Iebesgue integral if F=1R).

If I 1is an open subset of 1R and f: I —E 1is Cl , then

pf(t) , for + in I, is in L(IR,E) . Thus Df(t)l dis an element

of B , and it is simply the ordinary derivative

ar

£(t+h) - £(t)
at )

(t) = £'(t) = 1lim -

h—-0

If £f: I — E 1is continuous and a 1is in I , we claim that

g(t) = J7 £(s)as

is C° and g' =f . To see this, observe that
[0 2(s)as - ¥ £(s)as
a a
= ft+h f(s)ds
t
- ne(t) + ft+h (£(s) - £(t))ds
= he(t) + o(n)

by the continuity of £ .

Theorem 5 (fundamental theorem of calculus). Iet E and F

1
be Banach spaces, let U be open in E , let £f: U—F Dbe C , and

let x+ty be in U for O <t < 1. Then
fx+y) = £(x) + fé Df(x+ty)ydt .

Proof. Define ¢ , for 0 <t <1, by o(t) = fx+ty) . For

A

0<t<1l, o (t)=Df(x+ty)y by the chain rule. Define V¥ , for

0<t<1, by
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() = £(x) + [T DE(xrsy)yds

Then for 0< t <1, V¥'(t) = Df(x+ty)y by the continuity of Df .
By Thecrem 4, o-¥ is constant on (0,1) , and since ©® and V¥ are
continuous on [0,1] , -y 1is constant on [0,1] . Since @(0)=v(0),

o(1) =¥(1) . QED

An immediate corollary is the mean value theorem: under the

hypotheses of Theorem 5,

le(xry) - 2 < sup  (IDE(xrty) v -
0<t<l1

A function f: U — F 1is called Lipschitz in case for some constant

K < o (called a Lipschitz constant for f)

le(x) - £l < Kllxy-x,ll 5 %%y €U .

It is called locally Lipschitz in case for each x in U there is a

neighborhood V of x in U such that the restriction of  to V

is Lipschitz. Thus a Cl function i1s locally Lipschitz.

Theorem 6 (Taylor's theorem). ILet E and F be Banach spaces,

let U be open in E , and let f: U —-—>F be Ck . Then

k
D f(x) yk N

k
k! )

flx+y) = £(x) + DE(x)y +...+ o(y

Proof. For k =1 +this is true. Suppose it is true for k-1

end let f be C° . Then Df is C°°7F , so that

Dkf(x) k-1 k

TE:ETT t vy o+ o(t

DE(x+ty)y = DE(x)y + D E(x)ty" +.. .4 k-l ky

Integrate this between O and 1 and apply Theorem 5. QED
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Theorem 7. Iet E and F be Banach spaces, let U be open

in E, and let £: U—>F be C' . Then D'f is symmetric, for

Proof. let aj(x) - sym DYf(x) . Since y9 is symmetric,

aj(x)yJ - D)f(x)yY . By Taylor's theorem,

8 (%)

k!

flxry) = ay(x) + aj(x)y +...+ ¥+ o(y) .

By the converse of Taylor's theorem (Theorem 3), aj(x) = pYr(x)

Therefore Df(x) is symmetric. QED

2. Picard’s method

We shall be studying non-linear time-independent differential
equations. In doing so, however, it will be useful to have some infor-
mation about linear time-dependent differential equations.

Recall that the differential equation

ar(t)

I g(t) b

with g a continuous function of t , is solved by integration:

t

£(t) = £2(t,) + [, sls)ds ,
0 t

0
and we have sketched how the integral may be defined. In very close
analogy, the linear time-dependent equation may be solved by the
product integral. This is an ancient device going back at least to
Volterra at the turn of the century, but it keeps being rediscovered.

. A
If E is a Banach space and A is in L(E) we define ¢ by
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This series is absolutely convergent in L(E) and we have the crude

estimate

A“ e“A“ )

Il

IN

For ¢t and s in R,

tA sA (t+s)A
e e = e B

so in particular each etA is invertible with inverse e-tA . (However,
eAeB is not in general equal to eA+B unless A and B commute.)

The operators etA form a one-parameter group, and

Thus if x is in E , £&(t) = etAx is the solution of the linesar

time-independent differential equation

ag(t) _
= = Ae(t)

with initial condition £(0) = x .

We claim that for A and B in L(E) 5

(1) “eA_ B < emaX[”A”,“B“}HA_B” ‘

To see this, write A"- " as the telescoping sum

AT B - AP H(alB) + AT %(A-B)B +.. .+ A(A-B)BYE 4 (a-B)BRT

Thus

Ia™- 8% < n(maxllal, I513)" a-sl

and so (1) holds.



2. PIGARD'S METHOD 15.

Iet I = [a,b] with - < a <b<w, let E be a Banach
space, and let QQ. be the Banach space of all regulated functions A

from I to L(E) , in the norm

lall = suwp la(e)ll
gftfb

We wish to define the product integral, which we will denote by
b

I {(1+A(t)at) ,
a

for A inQ..

If A is & step function, A(t) = A, for t, . <t <t

J Jj-1 J
where a = to < tl <...< tn-l < tn =b, set Atj = tj - tj-l , and
define

b AtnAn AtlAl
I (1+A{t)dt) = e ... e .
a

Notice that the operators with the smallest value of the time parameter
operate first. If B 1is another step function we claim that

b b
(2) I (1+a(t)at) - T (1+B(t)at)l <

a a

. (b-a )max{“A” ’ ” B“ }(b_a)”A—B”

To prove this, assume that we have a common refinement of the twe par-
titions of [a,b] , write the difference of the two producp integrals
as a telescoping sum, and estimate using (1).

By (2), the mapping

b
A~ T (1 +A(%)dt)
a

is uniformly continucus on each bounded set in the space of step func-

tions, and so has a unique continuous extension (denoted in the same
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way) to all of 52 , which by definition is the completion of the space
of step functions. In particular, the product integral is defined for
all continuous A: T —> L(E) . The estimate (2) extends by continuity
to all A and B in JZl .

We mention in passing that the product integral is what is

frequently called the time-ordered exponential, denoted by

— fb A(t)at
A e ?

(This notation is somewhat abusive, since fz A(t)dt and fz B(t)at
may be equal without the corresponding time-ordered exponentials being
equal.) It may be defined, by power series expansion, to be

b .

1+ [ Alg)at, + If At )A(t.)at dt, +
a -E L a<t. <t <b 2 1 1e
— 1=

Notice that operators with the smallest value of the time parameter
always operate first. There are no factorials in this expansion since

the restriction a <1t .< tn < b reduces the domain of integration

PR

to 1/n! of what it would be otherwise. Tt is not hard to show that

— 2 a(z)at
(1+A(t)at) = A e 2 ,

[i=NNod

but we omit the proof.
It is easy to see that the value of any product integral is an

invertible operator. If a > b we define

b a 1
T (1+A(t)at) = (I (L+A(t)at}™~ .
a b

With this convention we always have
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[¢] b [¢]
(3) T (1+A(t)at) T (1+A(t)dt) = T (1+A(t)dt) .
b c a

We claim that if a <t <b and A 1is continuous, then

g b t
(L) s (1+A(s)ds) = A(t) T (1+A(s)ds) .
a a

To prove this we need only show that
t+h
(5) I (1+A(s)ds) = 1+A(t)n + o(h) ,
t
for then (4) follows by (3) and the definition of derivative. To prove

(5), we use the estimate (2) and find

t+h t+h
1 (1+A(s)as) - @ (1+A(t)as)
£ £

<Pl g i) - A - o(n)
<s<t+h

by the continuity of A and the fact that t and A(t) are fixed.

But

t+h
T (1+A(t)as) = e
t

BA(t) _ 1+A(t)h + o(n)

Thus (4) is true.

Theorem 1. Iet I be an open interval, let E be a Banach

space, and let A: I —> L(E) be continuous. For all x in E and

ty, in I there is a unique ¢’ function £:I = E with e(ty) = x

and satisfying

aE(t) _
(6) = = Ale)e(e)
It is given by
t
(1) t(t) =T (1+A(s)ds)x .
t

0
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EE B: I — L(E) is also continuous and we let 7n: I —> E be the

solution of

L) - p(e)n(s)

with n(ty) = x then for all t in I,

| t-t, [mex([lall, 1B

(8) le(e) - n(e)l < e lt-to ) la-3ilxdl

where [lAll denotes the supremum of [|A(s)]] for s between t, and t.

Proof. We have just seen that (7) solves (6). The uniQueness
is proved in the usual way: if E is also a solution with E(to) =X
then for each g > O the set of t such that |[&(s) -Eks)” < s]s-tO’
for all s Dbetween to and t 1s both open and closed, and contains
tO , and so is all of I . Since ¢ 1s arbitrary, E = £ . The

inequality (8) follows immediately from (2). QED

Picard's method for proving the local existence and uniqueness
of solutions to systems of ordinary differential equations is based on

the following simple fixed point theorem.

Theorem 2 (fixed point theorem for proper contractions). ILet

M be a complete non-empty metric space, and let ¢: M —= M be such

that for some a <1,

d(q’(xl);@(xz)) < ad(Xl,XE) ; XlJX2 eM,

where d 1is the metric on M . Then there exists a unique fixed point

for ¢ If x. is any element of M then @n(xl) — x

Ko o - 20X 0"

Proof. Ilet %y be in M . Then
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n+l(X

(0™ (x)),0%(x))) < a"a(8(x)),x,)

Therefore, by the triangle inequality,

a(e™(x,),0%(x))) € A(07 (), 0" x))

n+k-1
xl),Qn(xl)) <( = aJ)d(Q(xl),Xl) .
j=n

+ d(®n+l(

Therefore @n(xl) is a Cauchy sequence. Let xo be its limit. Since

¢ is continuous,

_ . n s n+l Coas n _
®(x0) =% lim (xl) = lim @ (xl) = 1lim @ (xl) =%y,
n n n
and x is a fixed point. The uniqueness is obvious. QED

0

Before applying this theorem to differential equations, let us
use it to prove the inverse function theorem (following Lang [5, p.12]).
A Ck diffeomorphism of an open set U in a Banach space E to an
open set V 1in a Banach space F 1s a bijective Ck map f: U —V
such that f-l is Ck . If U is non-empty and f: U— V 1is a Ck
diffeomorphism (k > 1) then E and F are isomorphic Banach spaces
(not necessarily isometric), for if x is in U then by the chain

rule Df(x) and Df-l(f(x)) are inverse continuous linear transfor-

mations between E and F . A local Ck diffeomorphism at x in U

is a map f defined in a neighborhood of x such that for some open
k .
neighborhood W of x , the restriction of f to W is a C diffeo-

morphism of W to f(W)

Theorem 3 (inverse function theorem). let E and F be

k
Banach spaces, U open in E , Xy in U, f:U—=F of class C,
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k>1 . Suppose that Df(xo) is invertible. Then f 1is a local Ck

diffeomorphism at x .

Proof. We may replace f by Df(xo)_lof , and so we may
assume without loss of generality that E = F and Df(x =1 . Also,
we may assume without loss of generality that XO = f(xo) =0 .

Now let

g(x) = x-f(x) .
Then Dg(0) = 1-1 = 0 . By continuity there is an r > 0 such that

gl < 3 Il < 2r .

By the mean value theorem, [lg(x)ll < %Hx” for Il < 2r . ILet B be

AN

the closed ball of center O and radius s . Then

g: B, —= Br .

2r
Iet y be in Br . We claim that there is a unique x in B2r such

that f(x) =y . To see this, let
n(x) = y+x-£(x) = y+alx) .

Then h: B, —> B, , and by the mean value theorem
zr er
1
IaGey) - nlx )l = leley) - gl < Hlx, - g

for Xl’ X5

tions, h has a unique fixed point in B2r ; that is, there is a

in B2r . By the fixed point theorem for proper contrac-

unigue x in 3B, such that f(x) =y . Therefore

e =1 Br — B2r

is well-defined. Since x = g(x) - f(x) ,
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Iy -2l < Melx)) - gCe Ml + Hefx)) - £(x )
1
S Bllx, - xl + Ne(x)) - 2 )l
s0 that
Ix, - %l < alle(x)) - 20 ) 5 X %, € By
Thus ¢: B. —> B, is Lipschitz.
T er
We claim that on a Banach space E , the invertible elements
L(E) are an open set, and on this open set the function A ~nn> A—l
is ¢© . To see this, let A ©be invertible and suppose that
I8 < 1/la™  Then A+B = A(1+AT'B) , so that
1 ® n, -1 1
(a+B)™ = (= (-1)™(aTB)Mat .
n=0
Since the power series is convergent, the function is certainly <™.
Consequently, if x is small enough, Df(x) is invertible,
since Df(0) = 1 . We assume that we have chosen r small enough so

that Df(x) is invertible for [x| < 2r with [Ipe(x)™ <c for
some c .

We claim that @ 1is differentiable on the interior of Br .
To see this, let [yl <r, I« <2r, o(x) =y, Iyl <z,

”X+xl” < er, f(x+xl) = y+yl . Then

lo(y+y,) - o(y) - peGx) "yl

= Ilxre -x - DECx) (2 (erx,) - £(6))

1

IDe(x) M pe(a)x, + £(erxy) - ()]

(WA

cll(xx,) - £(x) - pE(x)x [l = o(xy)

21.

of
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N
ny

since f is differentiable at x . Now x, = @(y+yl) - o(y) , and

since @ is Lipschitz o(x,) 1is also o(yl) . Thus @ is differen-

1
tiable and

Do = (Dfe) ™t .

. -1 . o - .
Since A ~an> A is ¢~ , Dp 1is a composition of Ck 1 functions

(by induction on k ) and so is a Ck_l function. Thus @ 1is Ck if

£ is. QED

If U 1is an open subset of E, X: U-—E is continuous,

and x 1is in U , an integral curve of X starting at x 1is a Cl

function §: T —> U , where I 1is an open interval containing O ,

such that ¢(0) = x and
ag -
—d‘b(t) = X(g(t)) > tel.

Thus £ 1is an integral curve of X starting at x if and only if

tE: T — U is continuous and

E(t) = x + ft X(t(s))as , t eI .
O

Theorem 4. ILet U be an open subset of a Banach space E and

let X: U—>E be locally Lipschitz. For each x in U there is an

integral curve of X starting at x , and any two of them agree on the

intersection of their domains of definition. For all XO 12 U there

is an open neighborhood V of Xy » 80 2 > 0 , and a unique mapping

®: (—a,a) XV—T

such that for all x in V , 1t ~awn> ¢(t,x) is an integral curve of

X starting at x . The mapping ¢ is locally Lipschitz. Tf X 1is

of class C1$ so is ¢ .
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Proof. Iet €& and 17 be two integral curves of X starting
at x , defined on the interval I . Let J %be the set of points t
in I such that £(t) = n(t) . Then J is clearly closed in I and
contains O , so we need only show that it is open. Iet to be in J ,
let W be an open neighborhood of g(to) = n(to) on which X is
Lipschitz with Lipschitz constant « , and choose € > O so small that

g < 1, thet &(t) end n(t) are in W for |t-t0| < g, and that

[ty-e, to+el C I . For |t—to| < & we have

e(t) = t(t,) + /T X(&(s))as
0
1(e) = (k) + ST x(n(s)as
so that °
le(e) - (o)l < 1Y [x(e(s)) -x(n(s))lasll < ke sup  llg(s) - n(s) -
0 |s-t|<e

0
Since this is true for all t with [t-to[ <e,

sup [le(t) - n(o)ll < ke sup [E(t) -n(e)l ,
[t-t|<e [t-t,l<e
and since Kg < 1 this supremum must be O , so that ¢t(t) = n(t) for
It—to| < g . This proves the uniqueness of integral curves starting at
any point x .

Given x in U , choose a neighborhood U of x such that

0 0] 0
X is Lipschitz with some Lipschitz constant K on UO and bounded
with some bound b on UO . Choose an open neighborhood V of X,

in UO and an a > O such that Ka < 1 and

ba < inf ||x-yl .
xXeV

Y£UO
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let
F={yeE: inf Hx—y” < ba} .
xeU
Then F 1is a closed subset of UO . Tet x be in V and let M be

the metric space of all continuous mappings €: [-a,al — F such that

£(0) = x , in the metric

ale,m) = sup le(t) -n(e)l -
|t|<a

This is a éomplete non-empty metric space. For €& 1in M, define
o(t) by

@(e)(6) = x + Jg x(e(s))as .

Then ®(¢): [-a,a] —> E 1is continuous, ®(£)(0) = x , and the range
of ®(t) is contained in F , so that ®: M —> M . The argument used

above 1in proving the uniqueness of integral curves shows that

a(e(e),(n)) < «ad(k,n) .

By Theorem 2, ¢ has a unique fixed point, which is an integral curve
for X starting at x .
Let o(t,x) = £(t) where ¢ is this fixed point. ABs before,
sup ”@(t,xl) - ot x )l <
[t,<a

e el + sup 175 Dx(a(s,x,)) - X(a(s,x,)) las|l <

[t]<s

e x5l + ke sup flolt,x)) - o(t,x )l
[t]<a
so that

1
l?gﬂwﬁﬂﬁ)-wﬁwgﬂlfjjjerﬂ-
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Thus ¢ is Lipschitz in x , uniformly in t Clearly,

t
lott,,%) - @ty = Hfti x(9(s,x))asl < vleg-t,]
80 that @ is also Lipschitz in t , uniformly in x . ConseQuently
® 1is Lipschitz in t and x Jointly.

It remains to prove that if X 1is Ck so is @ . The hard
case is k = 1 ; the general case follows by induction.

First, a matter of notation. Suppose that El’ E2, and F are
Banach spaces, U is open in El @ E2 , and f: U-— F . For each
(xl,xg) in U we define le(xl,xz) to be the derivative (if it
exists) of the function g given by g(x) = f(x,xz) , evaluated at the
point X - The function le is called a partial derivative of f ,
and Def is defined similarly. It is easy to see that £ 1is Cl if

and only if le and D2f exist and are continuous. We apply this
now to the case El = IR, E2 =E . ‘

Iet X Tbe Cl . Formally, we expect D2¢(t,x) to satisfy
the equation

%E D o(t,x) = DX(p(t,x))DP(t,x)

et ¥(t,x) be the solution of
(9) S wltx) = DX(9(t,x))w(t,x) ,  ¥(0,%) = 1 .

This exists and is unique by Theorem 1.
We claim that ¥ is continuous. For each x, V(t,x) is

continuous in t . Since X is Cl , we may choose Uo,a , and V
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smaller if necessary so that DX{¢(t,x)) is bounded uniformly for

| ]

I~

a and x in V . Thus V¥(t,x) is continuous in t uniformly
in x . Let Xy be fixed in V . The set of @(t,xl) for |t| < a
is compact. Since DX 1is continuous, for all & > O there is a %>0

such that if

(10) lilllgaﬂcp(t,xl) - CP(t,Xe)” < b

then

(11) o Iox(eo(t,x;)) - Dx(a(t,x,))ll < e -
t|<a

(To see this, apply the Heine-Borel theorem to the compact set of
cp(t,xl) with |t] <a .) But @ is Lipschitz in s uniformly in t,
s0 there is a ®' > O such that if “xl-x2“ < ' then (10), and con-
sequently (11), holds. By (8) of Theorem 1, ¢ is continuous in x .
Together with the equicontinuity of ¥ in t , this shows that ¥ 1is
continuous.

Now we want to show that De@(x,t) exists and is egqual to

¥(t,x) . By the fundamental theorem of calculus,

S0t xy) - 9(1,%)) = X(9(t,x0)) - X(o(t,x))
= I3 mxl(t,x) + r(e(txey) - oft,x)}]ar(e(t,xey) - o(t,x))

’

let

A(t) = DX(o(t,x)) ,
B (t) = Jg DXlo(t,x) + r(9(t,x+y) - 9(t,x)}]ar -

Then A and By sre continuous mappings of [-a,a] into L(E) , and
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HA-By” —> 0 a y— 0, with “By“ remaining bounded, say “A” <c,

“By” < c . By (8) of Theorem 1,

sup (%, %)y - (0(t,x+y) - o(t,x)) < e*%alla-B Iyl = ofy)
t]<s d

Therefore Dew(t,x) = y(t,x) . Clearly %% o(t,x) = X(op(t,x)) . Since

both Dzm and Dlw exist and are continuocus, @ is Cl .

Now let X Te Ck ; k>2 . Then ¢ is Cl , and as we have

seen

g_t CP(t,X) = X(CP(t;X)) s
Tt a Pex) = DX(o(t,x)) X(o(t,x))
at Do®(tsx) = Dx((t,x))-D(t,x) .

Since X is Ck , the right hand side of this system is’ a Ck_l

function of the triple o, ggcp, DEQ . By induction, this triple is

ot , SO %%CP and D,Q are Ck_l and @ is S QED
. . . X . k+1
Notice that we have shown that if X dis C then ¢ is C
. . . . ko by e k-1
in t . A function is said to be Lip in case it is C and the

k-1 derivative is locally Lipschitz. A very easy induction shows that
if X 1is Lipk so is @ , thus giving a very simple proof that if X
is C° (which is the same as Lipk for all k) so is @ . It is
surprising how difficult it is to show that if X is Cl then @ 1Is
1

C” , but there is no simple proof in the literature. For an interesting

modern proof, see [12].
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3. The local structure of vector fields

We have been discussing mappings X: U —> E . Ioosely speak-
ing, these may be termed vector fields on U . If R is a diffeomor-
phism of U onto an open set V 1in the RBanach space F then we

define the transformed vector field Y = RX on V by
-1 -1
¥(y) = IR(R "y)X(R 7y) -

The reason for this definition is as follows. If X is locally Lip-

schitz it generates a local flow m(t,x) on U with
d
$e o(tx)| g = X(x)

This flow may be transported to V by setting

(RD&,y) = R(O(£,R7y)) .

The vector field generating this local flow is the above defined Y= RX,
. . k . k . k-1

by the chain rule. If X 1is C and R 1is C then R,Y 1is C B

and this 1s the best that can be said in general. However, notice that

if X generates a ¢ local flow (for example, if X is i ) and

if R is Ck then the transformed local flow is also Ck , so that

R X also generates a Ck local flow although it may not be a Ck

vector field.
Given a vector field X on U we may seek a diffeomorphism
R such that RX has a simpler appearance. There is no loss of

generality, given x. in U , in assuming that E = F and R(XO)ZLXO-

0

Thus we are seeking a change of coordinates which simplifies X
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A point x iIn U 1is called a regular point of X in case
X(x) # 0, otherwise it is called a critical point. Notice that x 1is
a regular point of X if and only if R{(x) is a regular point of R X
The straightening out theorem asserts that we may choose coordinates in
the neighborhood of a regular point so that X Tbecomes a constant.
Sternberg's linearization theorem (in the finite dimensional case)
asserts that in the neighborhood of a critical point we may, in general
but not always, choose coordinates so that X becomes linear. We
shall assume throughout this section that E 1is a finite dimensional
Banach space (R° with some norm), although the straightening out
theorem is true without this assumption.

We shall achieve a considerable simplification in the proof of
the Sternberg linearization theorem by using some ideas which are
familiar in quantum mechanics. Iet Uo(t) and U(t) ©be two one-
parameter groups of transformations on some space (for example, unitary
groups on Hilbert space or flows on a manifold) Suppose that the

limit

(1) lim U(t)UO(-t) =W
t 5w

exists. In quantum mechanics this is called the Mfller wave operator.
There is an analogous operator W = lim U(t)UO(-t) , and the

- t - -
scattering operator S , or S-matrix, of Wheeler and Heisenberg is con-
structed in terms of these wave operators. Notice that if (1) exists

then

U(S)WUO(—S) =W .

If W 1is invertible this means that



30. I. FLOWS

WstW -u.(s) ,

0
and the two one-parameter groups are conjugate. If they are generated
by X and X, this means that (w'l)*x =X, - Inorder for W to
exist, we see that the flow UO(-t) must carry points into a region
where the flow U(t) is approximately egual to Uo(t) ; that is,
where X 1is approximately equal to Xo .
As a Tfirst illustration of this method, we use it to prove the

straightening out theorem, although for this simple result the usual

proof [6, p.58] is equally easy.

Theorem 1 (straightening out theorem). Iet U be an open

subset of R°, let X: U—> R° be C° with k>1, and let x,

in U be a regular point of X . Then there exists a local C

diffeomorphism W at Xq such that WX 1is constant in a neighbor-

hood of XO .

U Ct)x /

Figure 1. Construction of W (Theorem 1).
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Proof. We may assume without loss of generality that

x. =X(x.) = (1,0,...,0) . ILet xo(x) = (1,0,...,0) for all x in

o)
R . Iet U be a neighborhood of x

1 1
x >0 (where X denotes the first component of x), such that

0 contained in the half-space

1
(x(x))*t >z on U. ILet f bea c®  function, 0 < f <1, with
support in U which is 1 in a neighborhood of XO . Then
s
X = fX + (1-f)XO
. k . . . .
is C , agrees with X 1in neighborhood of XO , agrees with XO

a
~o
outside U , and (X(x))l > %

on U Dby the triangle inequality.

N
It is clear that X and XO generate global flows, which we

[a ") ~
denote by U(t) and Uo(t) . Thus U(t) and U.(t) are ¢ aiffeo-

0

morphisms of I%S onto itself, for each t , and they are one-para-

meter groups (by the uniqueness assertion of Theorem 4, §2). Iet

s
wx = lim U(t)u.(-t)x .
t > o

0

~o
It is clear that this limit exists, since U(t)UO(-t)x is constant in

t as soon as t > xl . Furthermore,

Wl = lim U (0)0(-t)x

t%oo O

~ 1
exists since Uo(t)U(—t)x is constant in t as soon 8s t > 2x

Thus W 1is a Ck diffeomorphism of B?S onto itself, and clearly

w'lﬁ(t)w = Uo(t) .

- ~
Therefore (W l)*X =X _. . Since § = X 1in a neighborhood of X the

0 0’

proof is complete.
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Cur problem now is to show that in general we may choose coor-
dinates at a critical point of a vector field so that it becomes linear.
The meaning of "in general" will be made clear later. DNow we show that
this is not always possible; cf. [9, p.812].

Iet

X(X) - (ax+y2)
y by

~

Suppose there is a local diffeomorphism R at O which is Cd and
such that RX 1s linesr. There is no loss of generality in assuming

that R(O) = 0 and DR{O) = 1 . We may write

2 2
X+0x +PBxy+7y 2
b'd X
R - . s ) ol
y+Ax +Bxy+Cy
so that
Qx2 2 -
1% X - - Bxy - 7y .-
R - . 2 |+ o)
y-Ax -Bxy-Cy
and
% l+20x+ By PBx+eyy <
DR = + 0
(y) (y)

2AxX + By 1+ Bx+ 2Cy
. A -1 /x b d
Notice that this is also equal to DReR (y) + o(y) . Therefore

X -1 -1/x
R*X(y) = DReR™ -XoR (y) =

- 5 -
1+ 20x+ By Px+ 2yy a(x - ox" - Bxy - 7y°) + y° %2
+ o)
5 -
SAx + By 1+ Bx+20y/ \ b(y - Ax" - Bxy - Cy*
2 - 2
ax + a0x_ + Boxy + (1 - ay + 2yb)y X2
- + O(y)

by=+(2Aa-—bA)x2~fBaxy~+be<)
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For this to be linear we must in particular have (l-ay+2yb) =0 , and
this may be achieved if and only if a # b . Thus the vector field

X Zbx + y2
X =
(y) ( by )

~

cannot be linearized by a CC change of coordinates.
More generally, consider the orbits of the flow generated by
the linear veétor field
b'd kx
X, = ()
for k>0 . For k = 2, these are sketched in Figure 2. These
orbits are branches of the curves x = cyk , ¢ a parameter. If k
is an integer, each orbit has a Ck continuation through the origin.
This is & property which must be preserved by Ck diffeomorphisms but
which can be destroyed by adding a perturbing vector field Xl to XO

with Xl(O) =0 and DX.(0) = 0 . Thus for k an integer the local

5 (

phase portrait is unstable with respect to small perturbations.
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Thus we see that there may be arithmetic obstructions to
linearizing a vector field. We study this problem next.
) k - k
let ., for k = 1,2,...,» , be the set of all germs of C
mappings R at the origin in R® Jeaving the origin fixed and such
that DR(O) 1is invertible (that is, having non-vanishing Jacobian
determinant at 0 ). This is a group under composition, by the inverse
function theorem.
ek
Let A , for k¥ =1,2,..., be the set of polynomial mappings
R of degree <k of R® into itself with R(0) = O and DR(O)
invertible. This i1s a group under composition followed by truncation

—
(throwing away terms of degree > k). let ;f‘w be the set of all

formal power series of the form

where each Aj is in Liym(I{S,HRS) and A, is invertible This is

a group under formal composition.

We have the following commutative diagram of homomorphisms:

M s s s oyt
F— . — ?k—> ;k’l—ﬂ\...—> ;l,

where the mappings in the top row are inclusion, in the bottom row are
truncation, and the vertical arrows denote taking Taylor series. (The

latter depends on the choice of coordinates.) It is evident, except
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k —k . . .
for kX = » , that ,27 —> A is surjective. The following theorem

shows that _Qa JUEEE ;;“) is surjective, too.

Theorem 2. Let A, be in L‘;ym(IRs,]Rs) for j = 0,1,2,...

Then there is a C mapping F: R® —» R® whose Taylor series at O

Proof. We need only define F in a neighborhood of 0 , for
we may extend it to all of Rr® by multiplying with a scalar function
f which is 1 in a neighborhood of O and has support in the domain
of definition of F . Iet a: R — IR be Cm, 0<a<l, a=1

in a neighborhood of O , with support in [-1,1] . Let

Nﬂ:j;Aﬁ%W%Wﬂ%,

where ”x” is the Euclidean norm (so that X ~n> ”x“2 is 7 ).

The J'th term is C except where HAJHHXHE <1, so that

2 Il ot %) < gl Iaglled + 2 12172

and the series converges absolutely for “X” <1 . In the same way
we see that the term-by-term k times differentiated series converges
absolutely for “X” < 1. Therefore F is C° on Hx” < 1 . Since
a is 1 in a neighborhood of O , the Taylor series of F at O 1is

as stated. QED
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Given T in ,25k we may ask whether there is an R in /ij

such that R’I‘R_l is linear. If this is true in .Y k it is also true

k - . . .
— k is surjective. The next theorem gives

in i; k since _29
. s . 0 - . . . Cl k In Y
sufficient conditions for linearizing in + . We remark that "posi-

tive" means > 0 . By "eigenvalues" we mean complex eigenvalues.

-
Theorem 3. Iet T be in > K for some k = 1,2,...,0 , with

linear part Tl . lLet “l""us be the eigenvalues of Tl counted

with their algebraic multiplicities as roots of the characteristic

equation of T and suppose that for i =1,...,s ,

l 2

m m
1
ui%ul cee

whenever the rnj are positive integers with

Then there is a unique R EE ;; k with linear part Rl = 1 such

that RTR™' = T, -

Proof. Extend the ground field to € , and suppose first that

Tl is diagonalizable over € . Choose coordinates so that Tl is

diagonal. We want to solve the equation T.R = RT ; that is, the edua-

1

tion

S o)

1l

2
Tl(x+-R2x -+R3x

e 3 2 3 2
(Tlx+-T2x 4—T3x R R2(T1X~FT2X FTx” + R D S

where Tx = Z zjj and Rx = X ijJ . Comparing coefficients of x!

J J
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we See that we must have
2 J J 4 2ot
(2) Tlex Rj(Tlx) + £.0.%. ,
where £.0.t. stands for lower order terms; that is, terms involving

Ri with 1 < j , which we take to be already uniquely determined by

induction. Explicitly, if we let

(R.XJ). = z r, b'4 + cexC ,
J i . di,my...m 1 s
m.+...+m =] 1 s
1 s
this equation is
m m
1 s
M,T., =T, [T + £.o.t. ,
i 1,m1 m 1,ml m 1

and this has a unique solution by hypothesis. Since R 1is unique it

is real. (We also have RFRL - Tl ; that is, RrR~t = T, )
The result remains true without the assumption that Tl is

diagonalizable. Iet L(Tl) be the linear transformation on

J 5 8 .
Lsym(nz ,RY) given by

J_ J J
(L(Tl)Rj)x = Tlex Rj(Tlx)

The above argument shows that if Tl is diagonalizable the eigenvalues

of L(Tl) are all numbers of the form

with 1 =1,...,8; m .,m > 0; m, +...+m = J . By continuity,

17

this remains true for all T and L(Tl) is invertible by the

l 2
hypothesis of the theorem, so that (2) has a unique solution Rj . QED

-

By o(x”) we mean a function which is o(x?) for all j < m .
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Theorem 4. Iet X be a C° vector field k = 1,2,...,» ,

defined in a neighborhood of O in T° , with X(0) - 0 . Let

.,Ks be the eigenvalues of DX(O) , and suppose that for

M # mpAhy e m N

whenever the m(j are positive integers with

Then there is a local O~ diffeomorphism R at O with R(0) = 0,

DR(0O) = 1 such that
k
(3) (RX)x = IX(0)x + o(x")
Proof. ITet U(t) be the local flow generated by X , let X,
be the linear vector field X.x = DX(0)x , and let Uo(t) be the flow

0]
tX
e 0 generated by X, . Each U(t) and Uo(t) are in 5 ; let

[a¥) ~ el k ~ .
U(t) and Uo(t) be their images in A . Then Uo(t) is the linear
~ C tXg . .
part of U(t) and it is simply e , which has eigenvalues
tkl tKS
e T,...,e

[a¥) = k
Therefore Theorem 3 applies, and for each t there is an R in &

~y [aVia W) ’\./_l ~ Y
with DR(0) = 1 such thet RU(t)R ~ =U.(t) . An R which works for

O(
t also works for 2t , and by the uniqueness assertion of Theorem 3,

~

R is independent of t . Since /%?k — A is surjective, there

is an R in ,Zbk with image R , so that R(0) = 0, DR(0O) =1 ,and

RU(t)R'lx = Uo(t)x + o(xk) )
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Let V{(t) = RU(t)R'l and Y = RX , so that Y generates V(t) . To

conclude the proof we need only show that if XO and Y are two vector

fields generating local & flows U (t) and V(t) and if the Taylor

0

{here x. = 0) are equal

series of Uo(t) and V(t) at some point x o

0
to order k for all sufficiently small t , then the Taylor series of

XO and Y at XO agree to order k . For k = 0 this is clear:

U t)xo = V(t)xo for t sufficiently small, so X x. = Yx, . Suppose

O( 00 0

it is true for k-1, and consider the first variational equation.

Then the Taylor series of DUO(t) and DV(t) at x. are equal to

0

order k-1 , so the Taylor series of DXO and DY at X, are equal

to order k-1 , and the induction is complete. QED

We will call the condition on the A's in Theorem 4 the eigen-

value condition (to order k ); the condition on the u's in Theorem 3

the multiplicative eigenvalue condition. DNotice that if the eigenvalue

condition holds, DX(0) must be invertible. Furthermore, if A is
an eigenvalue of DX(C) +then -A cannot be. (Thus Hamiltonian vector
fields never satisfy the eigenvalue condition.) Since imaginary eigen-
values occur in conjugate pairs, none of the eigenvalues can be purely
imaginary.

Suppose that X is a C vector field with X(0) = 0, let

X be the linear vector field X .x = DX(0)x , and suppose that

0 O
Xx = XOX + o(xw) . It is not always true that there is local diffeo-
morphism F such that FX = XO . For example, let
Xy _ y
X0 = (D),

let ¢: B — IR be 2 ¢® function whose Taylor series at the origin
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is 1 but which is not identically 1 in any neighborhood of the origin,

~

and let X = ¢(r)XO where S xS+ y2 . The orbits of XO and X

are circles with center the origin, but the pericd of each XO orbit
is 2x while the periods of the X orbits vary with position, being
given by En/w(r) . Any intrinsically defined property of a vector
field is preserved by a diffeomorphism, so the periods of the orbits

of F*X cannot be constant and F*X cannot be edqual to XO . Notice

however that the eigenvalues of XO are 1 and -1 , so that XO

does not satisfy the eigenvalue condition. Thus there are two types
of obstacles to linearizing a vector field, one arithmetic and the
other analytic. The eigenvalue condition eliminates both cobstacles--
it remains to show this for the analytic obstacle. Notice that in the

example given above, since XO has closed orbits the flow generated

by X never leads into a region where the perturbed vector field X

0

is arbitrarily close to X so that wave operators cannot exist.

O 2

) . Xy _ Y
Figure 3. Orbits for XO(y) (_X) .
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Thecrem 5. Let U be an open subset of a Banach space E ,

let X: U-—E be Lipschitz with Lipschitz constant « , let @ be

the local flow generated by X , and let x and y be in U . Then

for positive t ,

llo(t,x) - o(t, 0l < lx-yll

Suppose that X = XO+Xl where XO and Xl are locally Lipschitz,

and let wo be the local flow generated by XO .

() lo(t.x) - o500l < 15 X5k (g (s, %)) as

Proof. We have

o(t,x) = x + [ X(o(s,x))ds
o(t,5) =y + Jg X(o(s,¥))ds
5o that
lo(t,x) - ot, ) < llx-yll + fg dlols,x) - o(s,¥)llas
et £(t) = [lo(t,x) - o(t,y)| . We claim that f must be smaller than

the solution F of the corresponding equation
F(t) = ||x-yll + fg kF(s)ds , which may be written as the differential
equation

F' = KF , F(0) = |[x-vl

To see this, define ¢ Dby

(08)(%) = Iyl + Jf xe(s)as

Then

Then for positive t,
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But the 1limit is the solution F of the equation, so f < F . C(Clearly,
Kt
F(t) = e fx-yl .

We prove the second statement in the same way:

9(t,x) = x + 5 (X, +%)(0(s,x))ds

0

9l x) = x + [ X(og(s,3))as

CP(t;X) - cpo(t,x) =

fg Ty +X )0, %) - (Xg+ X )o(s,x)]ds + Jg X, (0, (s,%))as

so that

lo(t,%) - 0 (£, < [ dlals,x) - o (e,x)las + ST % (0(s,5) Mas -

As before, ”m(t,x)-wo(t,x)” is smaller than the golution of the corre-

sponding equaticn, which is given by the right hand side of (k). QED
We are now ready to prove the Sternberg linearization theorem.

First we prove a special case, although it will be included in the

general case, because it is easier. We use the notation U(t) for the

local flow generated by a vector field X , so that Ult)x = @(t,x) .

Theorem 6. Iet X be a C° vector field defired in a

neighborhood of O 1in R® with X(0) =0 . Iet X x = DX(O)x and

o)

suppose that each eigenvalue M 9£ XO satisfies Re A < O and that

Xx = XOx + o(xm)

Let Uo(t) be the flow gemerated by X, and let U(t) ©be the local

flow generated by X . Then
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Wx = lim U(-t)Uo
- 1t 2 o

(t)x

exists and is a local ¢~ diffeomorphism at O -such that

_1)

(W_ ") = X,
in a neighborhood of O .
Proof. Without loss of generality we may assume that X is

globally defined with a global Lipschitz constant « , so that (as is
easily seen) U(t) is globally defined.

Since each eigenvalue A of XO satisfies Re A < 0 , there
are constants C < o and c¢ > O such that

lug(ell < ce™*

for all t >0 . (This is easily seen by writing X in Jordan

6]
tX
canonical form, since Uo(t) =e 0 )

Define Xl by X = XO+Xl . We claim that

t

o x, (U (s)x)las

(5) lu(-e)u ()=l < [

To see this, let y = Uo(t)x , so that x = UO(-t)y . By Theorem 5,

lu(-)y - uy(-edull < I e (U (-sdyllas

0 o]

- I3 (z-t)y)llar = & Flix (U (=)x)llar

K
0 e HXl(U

0

which proves (5).

Now let tl = t24—t with tl and t2 positive. Again by

Theorem 5, and by (5),
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(6)  Mul-t)ug(e)x - (-t )u (e )xl =

o=t )u(-t)u (eJu (e )x - ul-t)u (e )x] <

0] 0

Kt
e Mu(-t)ug () (ep)x - v el <

Kt
o 2 ft eKS”Xl(U

o (s+t,)x)as

0

Now X,x = o(x7) , so if k>0 and t, is large enough,

I, (W (500l < ot )l < cMemeRlerta)g

so that (6) is smaller than

Kt ., -ck(s+t,)
e e fg eK°Cke € Hkads

Kt, -ckt
e de“X”ke 2 fg e(K—Ck)sds

il

—(ck—K)t2
—s P
ck-K

if ¢k > k . But this tends to O . Consequently w_ exists, and
for x in a bounded set U(—t)UO(t)x converges uniformly. Hence W_
is continuous.

Recall the first variational equation. If v(t,x) = Dzw(t,x) ,

where o(t,x) = U(t)x , then the pair o,V satisfies

a w(t,xé> X(o(t,%)) ) @(t,x))
g = = X! »
RANTCRY DX(0(t,%)) ¥ (£, %) ¥(%,%)

where X' is defined by this equation, and similarly for Xé . Now

X' and XO satisfy the same hypotheses as before: Xé is linear,
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has the same eigenvalues as X (with higher multiplicities), and

0
X'x = Xéx + o(x7) . The corresponding flows are
<i t)x ;>
U (t U (t)x
us(e) () - -( °
DU,(t)x-& Ug(t)E
Therefore

U (-6)ug(e)(}) =

U(-t)UO(t)X t)U (t)x
(o (-£))(U,(t)x) DU (t)x: §;> D(U(-t)uy(t))x-¢

By what we have already proved, U'(-t)Ué(t) converges to a continuous
mapping. Hence D(U(-t)UO(t)) converges to a continuous mapping, so
that W_ dis €' . By induction, W_ is C"

It is clear that DW_(O) is invertible; in fact,
WX =x+ o(x”) so that DW_(O) = 1 . Hence (Theorem 3, §2) W is a

-1
local ¢~ diffeomorphism. As in the proof of Theorem 1, (W_ )*X =X

0
in a neighborhood of O . QED
Theorem T. Iet X Dbe a C°° vector field in a neighborhood

of 0 in R® with X(0) = 0 such that DX(0) satisfies the eigen-

value condition and each eigenvalue A of DX(0) satisfies Re A < 0.

Then there 1s a local c® diffeomorphism R EE 0 such that RX EE

linear in a neighborhood of O .
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Proof. This is an immediate consequence of Theorems 4 ana 6.

We say that two ¢® functions are equal to infinite order at

a point if they have the same Taylor series there, and that they are
equal to infinite order on a set if they are equal to infinite order
at each point in a set.

The next theorem is a technical lemma from which the Stern-

berg linearization theorem will follow easily.

Theorem 8. ILet X be a C~ vector field on IR° , with

X(0) = 0, such that each DX satisfies a global Lipschitz condition.

let X x = DX(0)x , let U(t) and U

o (t) %be the flows generated by

o]
X and XO , and define Xl by X = XO-+X1 . Suppose there is a

linear subspace N , invariant under X and a positive integer £

O 2
such that for all m >0 and § = 0,1,2,... there is a & > 0 such

that if |lz-N| <& then
%, ()l < lz-wll™2)®

let E Dbe the linéar subspace of all x in R® such that

lim HUO(t)x-NH =0 .

t ~—> o

Then for all j = 0,1,2,... and x in B ,

pI(U(-6)U (t))x

0

converges as t —> « and the limit is continuous in x for x in E.
Iet

Wx = 1lim U(-t)U.(t)x

- 0

t —

for x in E . Then W has a Cw extension G 39 HQS which is
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the identity to infinite order in a neighborhood of C in N and such

that in a neighborhood of 0 in E , (G'l) »X = X, to infinite order.

Proof. Since N 1is invariant under X NCE . On the

O )
quotient space E/N , Uo(t) —> 0 as t —» » , so there are con-
stants C <o and ¢ > 0 such that

e—ctH

lug(t)x-nll < c x|

for all x in E and =t >0 . Iet K be a Lipschitz constant for

X and XO and choose m so that
me > K+ 2K .

Iet K be a compact set in E and let t2 be large enough so that

lug(s)x -l <3

Figure 4. Construction of W_ (Theorem 8).
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whenever s > t2 and x is in K (where & is as in the hypothesis

of the theorem). Let t) >ty t; =t,+t . Then by Theorem 5, as

in the proof of Theorem 6, for x in X

lo (-t Ju (e )x - U(-t,)u,(t,)xll =

(-t )u(-e)u ()u(ty)x - Ul-t)u ()=l <
Kt2

e Mul-tu (tug(t)x - v le)xdl <

Kt
e 215 ¢ Clx, (Uy(srt )x)llas <

Kt -me(s+t,)
e ° e Z Mg s+, )xl as <
Kt -me(s+t,.) kE(s+t,)
e fg eS¢ ™ 2 )ll*as -

e—(mc-K-EK)tQHXH£+mCm

me - K - £K

Therefore W_ exists and is continuous on E . Notice also that since
m may be chosen arbitrarily large, this shows that if W_ is c”
(and we shall prove this below) then it is the identity to infinite
order on N .

Now consider the first variational equations of X and XO y
on R° ®L(R®) . They are given by

- 30 () ()

We let N' be the space of all (z) with x in N . We see that

X', Xé , and N' again satisfy the hypotheses of the theorem, with
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z) with

x in E . Let U'(t) and Ué(t) be the flows generated by X' and

£ replaced by £+1 . The space E' is the space of all (

Xé . By what we have already shown, we know that

ur (-6)ug () (5)

converges to a continuous mapping for 811 x in E , and as in the

proof of Theorem 6, this implies that D(U(-t)UO(t))x converges as

t — o to a continuous function of x in E , so that W_ is C:L

on E . By induction, DJ(U(—t)Uo(t))x converges as t —> o for x

o]
in E , and W_ is C

Let
1 . J
G.(x) = = 1im DY(U(-t)U.(t))x
J J- t — o
for x in E and j = 0,1,2,... . ILet &: IR —>= IR Dbe as in the

proof of Theorem 2 (@ is C , O <@<1, @=1 in a neighborhood
of 0, and « has support in [-1,1]). Iet P be a complementary

space to E, R° =E®F, and let

[oe]
j 2
H(x®y) = = o.(x)yallla iy,
s J J
J=0
where ”y” 1s the Euclidean norm. Then in a neighborhood of 0O in
RS , G 1is a ¢* extension of W_ which is the identity to infinite

order on N , and

DjG(x) = j!Gj(x)

for x in E and J = 0,1,2,... . (”Gj” :sup”Gj(x)“ for x near 0.)
< X

Since G 1is an extension of W ,

U(-t)GUO(t)x = Gx
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for x 1in a neighborhood of O in E . For each fixed s and for
such x ,

Dj(U(-s)U(-t)Uo(t)Uo(s))x — Dox .

But U(—t)UO(t) —> G together with all derivatives in a neighborhood

of O in E , so that

DJ(U(-S)GUO<S>)X — > plox .

That is, U(-S)GUO(S) = ¢ to infinite order in a neighborhood of 0
in E , so that

Uo(s) = G'lU(s)G

to infinite order in a neighborhood of O in E . By the argument
given at the end of the proof of Theorem 4%, this implies that

Xy = (G-l)*X to infinite order on E . QED

Theorem 9 (Sternberg linearization theorem). ILet X be a c®

vector field in a neighborhood of O in R° with X(0) = O such

that DX(0) satisfies the eigenvalue condition. Then there is a C

local diffeomorphism F at O such that FX 1is linear in a neigh-

borhood of O .

Proof. By Theorem 4 there is a ¢® local diffeomorphism R

at 0 such that RX = XO to infinite order at O , where

Xgx = DX(0)x . Therefore we may assume that X = X, to infinite

order at O .

Let E+ be the stable linear manifold for X that is, the

O }
space of all vectors x such that Uo(t)x —>0 as t —> » , where
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tX
Uo(t) = e 0 . let f be a C°° function which is 1 in a neighbor-

hood of O with compact support in the set where X 1is defined, and

replace X by fX . Then X, X and N = O satisfy the hypotheses

O )
of Theorem 8, with £ = O and E = E+ . Therefore there i1s a local

ol diffeomorphism G at O such that GX = X to infinite order

6]

on a neighborhood of 0O in E+ .
Iet E be the unstable linear manifold for XO ;

the stable linear manifold for -XO . If we apply the above result

that is,

to -X , we see that we may assume that X =X to infinite order in

6]
a neighborhood U of O in E_ . ILet f be a C° function which

is 1 in a neighborhood of 0 with compact support the intersection

Figure 5. Linear flow near an

elementary critical point (Theorem 9).
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[a¥)
of which with E_ is contained in U, and let X =X 1—f-(X-XO) .

0
~u o
Then X = XO outside a compact set and X = XO to infinite order on
(a V)
E . Then X, XO ; and N = E_ satisfy the hypotheses of Theorem 8
with £ =0 and E = IRS . Therefore there is a C° local diffeo-

~
morphism F at O such that FX =X in a neighborhood of O .

0
Since % = X mnear O , the proof is complete.

We conclude this section by giving some complements the proofs
of which are only sketched.

Iet X be a Cm vector field defined near O in IRS , with
X(0) = 0, such that IX(0) satisfies the eigenvalue condition to
order m . By Theorem 4 there is a ¢" local diffeomorphism R such
that RX 1s linear to order m. Now consider the proof of Theorem 8
applied to RX with N =0, £ =0 . For the constant c we may
take any number c < min{|Re A|: Re A < O} and for the Lipschitz
constant K we may take any number K > max|Re X| (after modifying
R,X away from the origin). Then U(—t)UO(t) converges on E, pro-
vided me, > K , and Dj(U(-t)UO(t)) converges on E,_ provided
me, > (j+1)k , since £ 1is replaced by £+1 at each step of the
induction. If § satisfies this ineqguality, there is a local CJ
diffeomorphism G such that (G-l)*R*X is linear to order j on E+ .
Similarly, if jc_ > (k+1)k , where c < min{|Re A|: Re A > 0} ,
there is & C° local diffeomorphism H such that (H'l)*(G‘l)*R*X

is linear near O . In this way we obtain the following theorem:

Theorem 10. Iet m and k be integers > 1, let X Dbe a

¢™ vector field in & neighborhood of O in TR° with X(0) = 0 such
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that DX(O) satisfies the eigenvalue condition to order m, and

suppose that

_ min{|Re Al: Re A > 0} /min{|Re A|: Re A < 0} o1 -1
" max|Re ] max|Re A| )T

Then there is a local Ck diffeomorphism F at O such that F.X

is linear in a neighborhood of O .

The Sternberg linearization theorem may be formulated and
proved in an entirely analogous manner for mappings instead of vector

fields:

Theorem 11 (Sternberg linearization theorem for mappings).

let T bea mapping defined in a neighborhood of 0O in RS

with T(0) = 0 such that DI(0) satisfies the multiplicative eigen-

value condition. Then there is a ¢® local diffeomorphism F at O

such that F‘TF—l is linear in a neighborhood of O .

The proof is simpler in some inessential respects than the
proof for vector fields. Theorem 4 may be omitted, and Theorem 5 is

replaced by the following:

Theorem 12. Iet T %be Lipschitz with Lipschitz constant K .

Then

7% -1l < &Mflx-yll .

Eﬁ T = Toﬁ-Tl then

G A

n. .0
Il - roxll < ) 1Ts

i MB

k
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Proof. The first inequality is trivial. To prove the second

n I

inequality, write T -TO as the telescoping sum
n n n-1 n-1
T—’I‘o—(T T - T TO)+
(0% - P Ep ) e e (o727t oo gl
0 070 0 00

This identity makes the second inequality obvious. QED

From a topological point of view, the only invariant of a
vector field at an elementary critical point (elementary means that no
eigenvalue of the derivative is purely imaginary) is the index
dim E+ - dim E_ . We may use wave operators to give a simple proof
of this fact in the special case that Re A < 0 for every eigenvalue.
For the general case, see [T, p.2kL].

Theorem 12. Iet X be Ck , k=1,2,...,0 , in a neighbor-

hood of O in R® with X(0) = 0, and suppose that every eigen-

value A of Dx(0) satisfies Re A < O . Then there is a local

homeomorphism W in a neighborhood of 0, W(0) = 0, which is Ck

in & deleted neighborhood of O and is such that WX = -1 1in a

deleted neighborhood of O .

Proof. Ilet XOx = DX(0)x . Since each eigenvalue X of X

satisfies Re AN < O, we can give IRS an inner product so that for

0

some c¢ > O ,

(x,XOx) < -e(x,x), x € R®

(For diagonalizable XO this is clear, and for the general case we

may consider the Jordan canonical form with the 1's replaced by £'s .)
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Figure 6. Construction of W (Theorem 12).

Choose a C° function f with O < £ <1 which is 1 1in a neighbor-

hood of O and has compact support in the domain of definition of X
~o o ~

and let X = -l-+f'(X+l) . Then X =X near 0, X = -1 outside a

compact set, and

~

(X,Xx) < -c(x,x), X € IRS 5

for some c¢ > 0 if we choose f appropristely, since Xx = X +o(x).

(%] ~
Iet U(t) and Uo(t) be the flows generated by X and -1 .
Consider

Wx = lim ff(t)U (-t)x .

t 5 o

0

This 1limit clearly exists snd is Ck on IR° - {0} , since

U{t)U . (-t)x is eventually constant in t . Also, WO =0, and

0

Wik = lim Uo(t)'ff(-t)x

t =
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(Y ~
has the same properties, since by the construction of X , U{(-t)x
(a¥)
(for x # 0) eventually enters the region where X = -1 . It is also
-1
clear that W and W are continuous at 0O , so that W is a homeo-
. s S v s
morphism of 1R onto TR~ . We have W X = -1 on R~ -{0} , and
aYs
since X = X near O the proof is complete.

This topological classification is too crude to be of much

interest. See the examples of vector fields in [8, pp 372-3751].

4. Sums and Lie products of vector fields

If X i1s a locally Lipschitz vector field in an open subset

of a Banach space, we denote by UX(t) the local flow it generates.

Theorem 1. ILet X and Y be locally Lipschitz vector fields

defined in an open subset U of the Banach space E . For all Xq

in U there is a neighborhood V of Xy with V contained in U

and an g > O such that

UX+Y(t)x = nlffg (UX(%)UY(%))nx

uniformly for x in V and |t] <€ .
Proof. We have
Up(n) = 1+ 10X + o(h) ,

and for each X, this holds uniformly for x in a neighborhood of

x ., and similarly for UY(h) and U Therefore

0 ry(B)

Ux+Y(h) = UX(h)UY(h) + of(n)



L. SUMS AND LIE PRODUCTS OF VECTOR FIELDS 57.

uniformly in a neighborhood of Xy - If we write

£\ ty ot D
(U (30 - (U (DU (2))

as & telescoping sum (as in the proof of Theorem 12, §3) we see that if

K 1is a Lipschitz constant for X+Y near XO then

Kt

10, (80 - (0 (D) Al < & o(d) — 0

QED

uniformly for x in a neighborhood of XO .

Iet X and Y be Ck vector fields, with k > 1 , defined

in an open set U in the Banach space E . We define the Lie product
[X,Y] by
[X,v1(x) = DY(x)-X(x) - Dx(x) -Y(x) , XxeU.

This is a Ck_l vector field. Recall that we are abusing the term
"vector field", and it is necessary to show that if R is a o

diffeomorphism, with J > 2 , then

(1) [RX,R,Y] = R,[X,¥] .

This is a consequence of the symmetry of the second derivative, as we
now show. We have

1 1

R,X = DReR T-XeR™T = (DR-X)oR"™

*
Iet Rx =y . Then
D(R,X)(y) = D(DR-X)(x)-DR ()

by the chain rule, and similarly for Y . Therefore
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[RX,RYI(y)

D(DR'Y)(X)'DR_l(y)DR(x)X(x) - D(DR-X)(x)-DR'l(y)DR(x)Y(x)

il

D(DR-Y)(x)-X(x) - D(DR-X)(x)-Y(x)

But

D(DR-Y)'X - D(DR-X)-Y
- D®R-Y-X + DR-DY-X - DR-X-Y - DR-DX-Y
= DR-(DY-X - DX-Y) = DR-[X,Y]
so that

[R KR YN(y) = DR(x)-[X,Y](x) = RIX,YI(y) .

Theorem 2. Iet X and Y Pg 02 vector fields defined in

an open set U of a Banach space E . For all Xq in U there is a

neighborhood V of X with V contained in U and an € > O such

that

Uy - 1m0 SO S /D)%

n —x

uniformly for x in V and O <t <

AN
m

Proof. Since X is Ce so is the local flow {by Theorem U,
§2), and we have

d _
o UX(h) = XOUX(h) s

2
d = o

so that by Taylor's formula
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n? 2
UX(h) = 1+0X + 5 DK-X + o(h®)

uniformly for x 1in a neighborhood of x., , and similarly for Y .

0
Therefore
U (-n)uy (-n)u (n)U, (B) =
ne e ne ne 2
(1-nY + = DY-¥)o (1-1X + - DK-X)o (1+hY + o DY-Y)o (1+hX + z DX-X) +0o(h%)

When we expand this we must not forget terms like thY-X in

hYe (1+1X) = hY + h°DY-X + o(n®)

We obtain

2 ~

n 2 2 ne

1l-hY + 5 DYy + h DY-X - h DY Y - h2DY'X - hX + = DX-X

2 2 12 2 n2 z
-hDX~Y—hDX-X+hY+2—DY-Y+hDY-X+hX+2—DX'X+o(h¢)

= l+h2[X,Y] + o(hz)

Therefore
ty _ V/E It //E V/% t
U[X,Y](ﬁ) = UY(- H)U (- H)UY( E)UX( E) + O(H)
uniformly in a neighborhood of x. . When we write the difference of

6]

the n'th powers as a telescoping sum, as in the proof of Theorem 1,
we obtain the desired result. QED

* Theorem 2 shows that the Lie product has an invariant meaning,
independent of the choice of coordinates, so that (l) also follows

from Theorem 2.
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5. Belf-adjoint operators on Hilbert space

We shall develop briefly those aspects of Hilbert space theory
which are of greatest relevance to dynamics. A knowledge of integra-
tion theory is assumed.

Iet ?4' be a complex vector space. A sesquilinear form on }F

is a mapping M X P —= € which takes each ordered pair (u,v)
into a complex number <u,v> , such that <u,v> 1s conjugate linear
in u and linear in v (we follow the physicists' convention). For

a sesquilinear form, computation shows that the polarization identity

holds:

hau, v> = <utv,utv> - <u-v,u-v> - iutiv,uriv> + i<u-iv,u-iv> .

This means that any sesquilinear form is determined by the associated
quadratic form u ~n> <u,w> . A sesquilinear form is called Hermitean
in case <v,w> = <§7§> , so that a sesquilinear form is Hermitean if
and only if <u,w> 1is always real. The form is called positive in
case <u,u>> 0 (so that a positive form is necessarily Hermitean),

and strictly positive in case <u,u> >0 unless u = 0 .

For a positive form we have the Schwarz inequalilty:

1 1
(1) [<u,v>| < <u,w®<v, v .

To prove this, observe that

0 < <ut+v,utv> = <u,w> + <v,v> + <u,vw + <v,w> ,
> > 5 ) bl B

so that

-2Re<u, v> < <u,u> + <v, V> .
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We may multiply v by a number of absolute value 1 10 ensure that

-Re<u,v> = |<u,v>| , so that

—
n
~

2|<u,v>| < <ww> + v, v

Suppose <v,v> = 0 . Then the left hand side of (2) is homogeneous

of degree 1 in u while the right hand side is homogeneous of degree
2 in u, so both are 0, and similarly if <u,uw> = 0 . If neither
is 0 , we may take them both to be 1 , and (2) implies (1).

For a strictly positive form we define
ES
”U-” = <u,u>e

The triangle inequality

lovll < hll + 1]

holds, s0 u ~ann> “u” is a norm.

A Hilbert space M is s complex vector space with a strictly
positive sesquilinear form which is complete in the associated norm.
(Thus a Hilbert space is a Banach space together with a sesquilinear
form such that Hu”2 = <y,w> for all u .)

If M is any subset of the Hilbert space fag , we define M L
to be the set of all u in H such that <u,v> =0 for 2ll v 1in

M. . This is clearly a closed linear subspace of st

Theorem 1 (projection theorem). ILet 7/l be a closed linear

subspace of the Hilbert space M . Then N = MO wm Ll ana
m =t
o G o e L o M
oof. Clearly T N MW" =0 . Let u be in and let
d = inf Hu—x”

X €
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let Xn be a sequence in m such that ”u-xn” —> d . We claim that
X is a Cauchy sedquence. Computation shows that the parallelogram

law

2 2 2 Xt 2
Hxn-XmH = 2||xn—u” + 2”xm—uH -l 2m -ull©

holds. But (xn+xm)/2 is in M , so that

X +X
Hnm
2

~ uHE > d2
and

e -x 1% < 2lx -ull® + 2llx -ull® - 2a° —s 0 .
n m — n m

Since }+ is complete, X, has a limit x which is in M since M
is closed, and ”x—u” =d .

Since <u-xtty, u-x+ty> for y in ™M and t real has a
minimum at t = O , its derivative there is O , so that
<y,u-x> + <u-x,y> = 2 Re<y,u-x> = O . This remains true if we multi-
ply y Dby a complex number, and so <y,u-x> =0 . That is, u-x 1is
inml. Thus ¥
(YYL'L,GH :"mll@ DYY'LJ‘. SinceWCWLll,wehave
mo= It

A corollary is the Riesz representation theorem: If

me mt . By the same result applied to

il

v ann> f(v) is a continuous linear functional on ¥ then there is a
unique vector u in 7+ such that <u,v> = f(v) for all v 1in 7+
(Apply the projection theorem to the null space of T )

If A s in L{ M ) then for each u , Vv annd> <u,Av> is
a continuous linear functional, so by the Riesz representation theorem

*
there 1s a unique vector, which is denoted by A u , such that
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* *
<u,Av> = <A w,v> for all v . Clearly A is in L( ™ ) . Tt is
called the adjoint of A . An operator A in L( W ) 1is called
* *
self.adjoint in case A = A , skew-adjoint in case A = -A , and
* *
normal in case AA = A A .
If M. is a closed linear subspace of N , the mapping
. _ . ‘M o L
E: unn> x vwhere u = x+ty with x in . and y in WL is
. S * o)
easily seen to be in L((}* ), and E=E =R . It is called the
projection onto m . Conversely, an operator E in I ias ) with
2
E=E =E is the projection ontotYYL where M is the range of E
An operator U in L(€¥+ ) is unitary in case U is
bijective and <UW,Uv> = <u,v> for all u and v . This is the same

* -
as saying that U is invertible and U =T + . A strongly continuous

one-parameter unitary group is a family of unitary operators U(t) on

™ , @efined for all real t , such that
U(t+s) = U(t)u(s)

gnd such that for all u in H , t ~> U(t)u is continuous. It
* _
ig clear that U(0) =1, U(-t) =U(t) =U(t) + , and that the U(t)
commute.
. . s . itA
If A is a self-adjoint operator in L(H ) then U(t)=e
(defined by the power series expansion) is clearly invertible with
* -1 R .
U(-t) = v{t) = U(t) ", and it is a one-parameter unitary group with
the stronger continuity property that t ~n> U(t) is continuous from
R to L(MW ) (norm continuity or uniform continuity).

Three topologies on L(?+ ) are especially useful: the norm

topology in which a basic set of neighborhoods of O 1is given by



6k. I. FLOWS

N_= (& e LOCH): Al < e}

where € > 0 , the strong topology with

=8 e n(CH ) gl <ennllaa )l < e

EyU,,esesll
’_L, )n

where g > 0 and Upseee,u o are in H , and the weak topology with

E5U y0-0,U Voyene,V
JlJ )n) l) )n

(A e W ) ](ul,Avl)l < s,...,|(un,Avn)| < g}

where € >0 and u YV, are in CH' . The norm topology (also

10
called the uniform topology) is stronger than the strong topclogy,
which is stronger than the weak topology.

We will be concerned mazinly with unbounded operators. An

operator A on H’ is a linear transformation from a linear subspace

L7 (8) , called the domsin of A , to M . Tts range is denoted by
/@\ (A) . It is convenient to introduce a more general notion: a
graph on fas is a linear subspace A of M O W . We may identify

an operator with its graph, the set of all vectors of the form u D Au,
ue JS@A),in HW®MN . If A is a graph its domain JV(A) is
the set of all u in M such that u®v is in A for some v , and
its range R(A) is the set of 811 v in M such that u®v is in
A for scme u . A graph A 1is an operator if and only if O ©v in
A implies that v =0 . An operator A 1is called closed in case its
graph is closed. Thus an operator A is closed if and only if

u e L), w —>u,and Au —>v implies that u e L)
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and Au = v . An operator is pre-closed if its closure (as a graph)
is an operator, called the closure of A and denoted by A . An

operator or graph A is called densely defined in case JJ(A) 1is

dense in ﬂ*‘ . Wecdefine the operators p and T on 74 697+ by

p(u®v) = vOu ,

T(u®v) = (~v)Du .

If A 1is any graph, its inverse A-l is defined to be pA . TIf A

*
is any graph, its adjoint A is defined to be (TA)l .

Theorem 2. Iet A Dbe a graph on the Hilbert space ?4' .

Then

*_7 S %
(1) A"t - a7t

(i1) &1

= A
(1ii) A -EF - A

1

*

(iv) A - (a™H™

(v) E=a""

*
(vi) A is an operator if and only if A is densely defined,

* —
(vii) A is densely defined if and only if A 1is an operator.

*
If A is a densely defined operator, u is in JJ(A") if and only

if v annd> <u,Av> 1s a continuous linear functional on aCT(A) s ig

* *
which case A u is the unique vector such that <A u,v> = <u,Av> Tfor

all v in JJ(A) . If A is a densely defined closed operator, so

* *e
is A, and A =A .

Proof. The statements (i)--(v) are trivial to verify. To see

* *
(vi), notice that A  is an operator if and only if A N (O &N )=o0,
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if and only if atn { W®0) =0 (since 7T 1is unitary with 0= -1),
if and only if IT(A)l =0, 1f and only if A 1is densely defined,
by the projection theorem. By the projection theorem again,

1L xx . ** . *
=A  , but by (vi), A is an operator if and only if A

A=2a
is densely defined, which proves (vii). The remaining statements are
trivial to verify. QED

An operator A 1is called self-adjoint in case A = A* . An

operator A is called Hermitean (or symmetric) in case it is densely

*
defined and A C A . Thus a self-adjoint operator is Hermitean, but
the converse is false in general.
In our proof of the spectral theorem we will use the Riesz-

2
Fischer theorem, which asserts that L  of a measure space is com-

plete and hence a Hilbert space, and the other Riesz representation

theorem which says that if I 1is an interval, C(I) the Banach space
of continuous functions on I in the supremum norm, and p 1is a
positive linear functional on C(I) , then there is a measure on I ,

also denoted by p , such that

u(f) = J; fx)an(x)

for all £ in ¢(I) . If £ is a measurable function on a measure

space, the corresponding multiplication operator is the operator

~

M.: g ~n> fg on the domain (M) of 811 g in 17 such that
2
fg 1is in L
A linear operator from one Hilbert space to another is called

unitary in case it is bijective and preserves inner products.
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Theorem 3 (spectral theorem). An operator A on a Hilbert

space ?% is self-adjoint if and only if there is a unitary operator

e P2
S+ from “p+ to L°(M,u) , for some measure space (M,u) , such that

o~ = _7
2 A is a multiplication operator by a real measurable

function.

Proof. Suppose to begin with that A 1is a self-adjoint

operator in L{ P ) . ILet
T = [-llall,ial]

and let p be a polynomial. We claim that
(3) o) < sup [p(M)]
ANel

To see this, let n be the degree of p , let u be in M , and let

. . > n
E be the projection onto the subspace‘nm generated by u,Au,...,Au .
Then p(EAE)u = p(A)u . But EAE 1is a self-adjoint operator on the
finite dimensional Hilbert space Y. and so M has a basis of eigen-
vectors. (Proof: det(A-EAE) is a polynomial and sc has a root.
Thus there 1s one eigenvector e - Since EAE is self-adjoint it

leaves the orthogonal complement of e1 in ™M invariant, so there is
another eigenvector es s and by induction there is a basis of eigen-
vectors.) Since EAE is self-adjoint, each eigenvalue is real, and
has absolute value at most HEAE“ < ”A” , and so lies in I . Hence
o(Eam)| < sup{|p(A)]: A € I} . Therefore

lp(a)dl = llp(EAE ) < sup{|p(A\)|: A € I} . Since this is true for each

u, (3) holds.
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Thus the mapping p ~> p(A) from polynomials on I to
operators on L(‘)+ ) is continuous. But the Weierstrass theorem
asserts that any continuous function f on I may be approximated
uniformly by a polynomial. (Proof: Extend f +to be continuous on R

with compact support. Then

e

_{A-p)
1 ° Lt
——J e £u)au
¥ Tt
approximates f wuniformly as t —> O . But it is an entire function

of A and so the truncated Taylor series approximate it uniformly on
compact sets.) Hence there is a unique continuous mapping f’mn&>f(A)
from C(I) to L( M ) such that for f a polynomial, f(A) is the
polynomial applied to A . The mapping is a homomorphism and
f(a) = f(A)* , since these properties hold for polynomials.

Iet u be in :}k and consider the linear functional b, on
C(I) given by

uu(f) = <u, f{A)w> .

If £>0 then f = g2 , with g =g in C(I) , so that
2 *
u (£) = <w,g™(R)w> = <g(a) w,g(A)w> = <g(a)u,g(a)u> >0 .

Thus Ry is a positive linear functional and there is a unique measure

“u on I such that

<, F(A)u> = fI f(k)dpu(K)
for all £ in C(I).
let 7+‘u be the closed linear subspace generated by

~

u,Au,Adu,... . Then A restricted to M u is a self-adjoint operator
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on bH‘u . We claim that there is a unique unitary operator
[ Lo}
A R s B
u u u
(2 < = _1
such that & u =1 and A A A = M, , where M is the multi-
u u u A A

plication operator (Mkf)OQ = ANf(N) . To see this, let
<
+, (£(R)w) = £

for all f in C(I) . If f(A)u =0 then |f]“(&)u = 0, so that

It

0 = <£(A)u, £(A)uw>

I 1200 a0

and f = 0 almost everywhere with respect to the measure Hy Thus

—
#* u is well defined from a dense set in H-u to a dense set in

L‘(pu) . We have

<g()u, £(a)w> = <u, (gf)(A)w> = [, (M) f(M)du (M)

c c= 2
and so Tu has a unique unitary extension fu: CH’u —> L (uu)

— o= =
It is clear that fuu =1 and qu A_u =M and uniqueness is

}\. 2
also clear.
Now we may finish the proof of the spectral theorem for the

case of a self-adjoint operator A in L(zH') . By Zorn's lemma

there is a family of vectors Uy such that DH—u and (N-u are
[0/ B

orthogonal whenever Ot;é B and such that CH' is the direct sum of the

‘“H—u . Iet (M,u) be the direct sum (disjoint union) of the measure
(04
< 2
spaces (I,uu ) and define the unitary operator # : cH’ —> 1L°(M,u)
by letting A = ;Q'u on eH'u . Then A has the desired property

[0 a
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c= o
-1 . s .
that >t A # is a multiplication operator; in fact, it is M

where A 1is defined by

(M (M) = ar ()

c G"’_l
and A A A by

£
I
b’
ct
H

—
et us denote A u by
be a bounded Baire function on I and define f(A&) by

-1 ~ [

£(a) = o “e(A) 4

If the fj are uniformly bounded Baire functions, lfjl <K, con-

verging pointwise to f then

fj<f\<x>>a<x> — > £(A(x))a(x)

for all x in M and

|fj(K(x))§<x) - 2(AG))u(x)]? < wPlax) |

By the Iebesgue dominated convergence theorem,

fj(X)u —_— f(K)u

in 1°(M,u) , and so fJ.(A)u——> f(A)u in M . This shows that

f ann> £(A) is well-defined, independently of the choice of

% . M —> 1°(M,1) . Notice that the f(A) all commute. In per-
ticular if f 1s the characteristic function XB of a Borel set in
I +then

Eg = XB(A)

is well-defined. Since X; = X; = XB > Ep 1s a projection, called

the spectral projection of A corresponding to the Borel set B .
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Now let Al""’An be a finite set of commuting self-adjoint

operators in L{H ) . Let I, = [_”Ai”’”Ai”] and

1 n
where the Bi are Borel sets in Ii . Define
X(Al,...,An) =% (Al) e Xg (An)
1 n
and define f(Al,...,An) by linearity. Noice that the XB.(Ai) com-
mute, since they are strong limits of polynomials in the Az . We

claim that

Hf(Al,...,An)” < sup [£(A)] .
Nel

This is clearly true for f = X, and since f may be written as a
linear combination of such X's with zero products, it is true for

the general T . Consequently we may extend the mapping

£ > f(Al""’An> to the uniform limits of such functions; in par-
ticular, to the continuous functions on I . If we repeat the discus-
sion we gave above for a single self-adjoint operator A in L(}+ ),
we obtain the spectral theorem for an n-tuple of commuting self-adjoint

operators A A dn L{H ) : there is a unitary operator

10
R

-+ —> L°(M,un) , for some measure space (M,u) , such that the
<™ <« _

A Ai.t‘ + are multiplication operators by real measurable functions

on M .
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In particular, this result holds for a pair of commuting self-
adjoint operators A and B in L(?+‘) . If C 1is in L(}#—) we
may write C wuniquely as C = A+iB with A and B self-adjoint in
L(3+ ) , and if C 1s normal then A and B commute. Thus we have
the spectral theorem for a normal operator C in L(N) : there is
a unitary operator 3: : ?4‘ — LE(M,u) , for some measure space
(M,u) , such that ;; C :; -1 is multiplication by a complex measur-
able function on M .

Finally, let A Dbe an unbounded self-adjoint operator on ?+

For u in (&),

<(i-A)u, (1-A)w> = <u,u> + i<y, Aw> - i<bu,u> + <Au,Au>

= <y, > + <Aw,Aw> > <u,w> .

Therefore 1-A 1is injective and since 1i-A 1is a closed operator,

this also shows that ,G?(i-A) is closed. We also claim that @(i-A)
is dense. If not, there is a non-zero vector 2z orthogonal to it, by
the projection theorem. By the definition of adjoint, =z 1is in the

*
domain of A = A and

*
0 = <z,iu-Aw> = -<A z,w> + i<z,uw> .

This holds for all u in [7(A) , s0 we may set u = 2z and obtain
0 = -<Az,z> + i<z,2> ,

which is impossible since <Az,z> is real. Therefore gQ(i-A) B
being closed and dense, is all of 74‘ , and since ”(i-A)u” > Hu” for

u in ,zT(A) 5 (i-A)_l is in L( W) with norm <1 . We claim
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_1% *_
)l = (i-4) 1 and since i 1is in

)—l

that it is normal. Now (i-A
* * * * -
L(W ), (i-A) = i'-A" = -i-A , so that (i-A = (-i-A)"' . Bub

i-A and -i-A commute, so

((-i-a)(1-a))7"

(-1-a)7Ha-a)7t

(1-2) (-0 = (iem)Heiem) 7t
((i-2)(-i-A))77

(i-A)_l*(i-A)'l

I

il

1

-1

and (i-A) is normal. Hence there is a measure space (M,u) and a

. L B 2 . S .
unitary mapping A : —> L°(M,p) taking C = (i-A) into multi-
plication by some complex measurable function € . The function C
is different from O almost everywhere because C = (i—A)_1 does not

A~

annihilate any non-zero vector. Therefore C L is a complex measur.

~

able function, and so is A = 1_8‘1 . Thus ;F: takes A into multi-
plication by K . Since multiplication by K is self-adjoint, X is
real almost everywhere. This proves the spectral theorem for an
unbounded self-adjoint operator.

To conclude the proof of the theorem, we need only show the
converse. More generally, if f 1s a complex measurable function on
the measure space {(M,u) we will show that M; =Mz . ILet g bein
,CT(M;) . Then there is an h in LE(M,H) (in fact, h = M;g) such
that

J nGOk(x)ap(x) = [ glx)f(x)k(x)du(x)

for all k in .D’(Mf) . From this it follows that h = fg a.e., SO

*
that N%‘C Mz . The reverse inclusion is obvious. QED
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As in the case of a self-adjoint operstor in L(hF#) , if A
is an arbitrary self-adjoint operator and f 1is a Baire function we
may use the spectral theorem to define the operator f(A) , and the
definition is independent of the choice of unitary map ;F— and measure

space (M, u)

Theorem 4% (Stone’s theorem). ILet U(t) be a strongly con-

tinuous one-parameter unitary group on a Hilbert space M . Then

there is a unique self-adjoint operator A such that

(1) Ult) = e

Conversely, if A is a self-adjoint operator then (4) is a strongly

continuous one-parameter unitary group.

Proof. The converse follows easily from the spectral theorem.

Let U(t) be a strongly continuous one-parameter unitary group.

Define its infinitesimal generator B by

U(h)-1 “

Bu = lim T

h -0

on the domain o7 (B) of all u for which the limit exists. We will
*
show that B 1is skew-adJjoint; that is, that B = -B .

Iet Re A > 0 and let

R,u = fz e Mu(t)udt | we R

Clearly, R, 1is in L{'W ) with norm < 1/Re A . We have

A
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U(i) -1 Ru = %U*’S e'%‘tU(t+h)udt - f‘g e_M'U(t)udt}
-A(t-h) _-at
- ‘8’ (e - e ) U(t)udt - % fg e'x(t'h)U(t)udt

—_ A fg e'mu(t)udt -u = ARu-U .

Therefore ,Q(RK) C B and (A-BR, =1 .

As N —» o, AN resal, %.R%‘ converges strongly to 1 since

re ™ has integral 1 and becomes concentrated at O (and ||U(%)ull

is bounded). Since each AR,u is in L(B) and AR,u —> u , the
operator B 1is densely defined.

If w is in J4J (B) it is clear that U(t)u is in JFJ(B)
and BU(t)u = U(t)Bu . Hence if u is in & (B), U(t)u is differ-

entiable. We have

g—t <U(t)u,U(t)u>'t:O = <Bu,w> + <u,Buw> = 2 Re<u,Bu> .

But  <U(t)uw,U(t)w> is a constant since U(t) is unitary, so that
*
Re<u,Buw> = O . Consequently B 1s skew-Hermitean; that is, B(C -B .

Now let u De in c&(B) . Then

At d

3% U(t)udt

w ~AL 0
R,Bu = fo e ""U(t) Budt = fo e

u-u

_ o ,d -\t -At o
= - IO (a‘g e TV YU(t)udt + e U(t)u]o = MR,

so that RA(%.—B)u =u for u in .&(B) and Re N> 0 . Together
with (K-B)RX =1, this implies that
-1
)

R>\=(>\.-B 5 Re A > 0 .
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If we replace t by -t we find in the same way that
f; e—KtU(—t)udt = (A+B)_lu .

*
But the left hand side is Rxll , so that

R: - GwB)t .

Thus
-1 % —_ -
(BT = (eB) 7,

so that

* —
(A-B) = A+B

*
and since A 1is in L( 7+ ) , =B =B and B is skew-adjoint. Con-
sequently A = -1B 1s self-adjoint.

Let

V(t) = ¥

To conclude the proof we need only show that V(t) = U(t) . One way

to do this is to observe that for Re A > 0,

fg e My (t)udt = (A-ia) Ty = fg e Mu(t)uat .

By the uniqueness theorem for Laplace transforms, V(t) = U{(t) . A
more direct proof is the following.

For ¢ <w let W _ be the set of all u in DY for all
n such that

il

8™l < cMllull

for all u . By the spectral theorem, ?+c is a closed linear sub-

space of 7+ invariant under A , and the union of the 74'C is dense
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in . (The space 74—C is carried by :; onto the space of all L2
functions which vanish almost everywhere outside the set where

}X, < ¢ .) Since A'U(t)u = u(e)A™ for u  in 3+—c , U(t) leaves
?4-c invariant. On 7N—C both U(t) and V(t) satisfy the differ-
ential equation that their derivative is 1A , which is in I( $+ C) .
Therefore by the uniqueness assertion of Theorem 4, §2, U(t) = v(t)

on M . - Since tne union of the fas . is dense, U(t) = v(t). QED

6. Commutative multiplicity theory

An unsatisfactory aspect of the spectral theorem as we have
presented it 1s the lack of uniqueness in the choice of the measure
space (M,u) and the unitary transformation ;F . In this section we
will study the problem more thoroughly and obtain a complete classifi-
cation of self-adjoint operators up to unitary equivalence. On a
finite dimensional Hilbert space this is easy: two self-adjoint
operators are unitarily equivalent if and only if they have the same
eigenvalues with the same multiplicities.

Multiplicity theory for unbounded self-adjoint operators is
essentially the same as for. bounded self-adjoint operators, and with-
out any genuine incrgase of difficulty of the problem we may study
families of commuting'self-adjoint operators.

In our treatment we shall use the notion of o-function due to
Paul I&vy and Laurent Schwartz [18]. This is a concept which is useful

in other contexts and deserves to be more widely known.
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*
A C -algebra is a norm-closed subalgebra (]_ of L(‘}F) such
*
that A in (0 implies that A is in (L . The following theorem

is due to Stone.

*
Theorem 1. Iet CL be a commutative C algebra containing 1.

Then there is a compact Hausdorff space X such that CL is * iso-

morphic and isometric to C(X) . The space X 1s unique up to homeo-

morphism.

It o: aA — C(X) 4is the isomorphism, to say that it is a *
*
isomorphism means that @(A ) = ©(A) . The space X 1is called the

spectrum of L (or Gelfand maximal ideal space of CXJ).

Proof. As we saw in the course of the proof of the spectral

A are commuting self-adjoint operators in L(?%‘)

theorem, if Al,..., n

and p 1is a polynomial in, n variables then

(1) loCay, -2l < Astmle(x)l

where

n
3o n el
i=1

et (l»o be the set of all self-adjoint operators in (L. and let

1= 1 [-allal] .
A e 0

Thus an element x of I dis a function x: A annd X

a from CZ/O to

u  [-Nall,llall]
A e O,O

x is in [-]lal,llall] . with the

such that for each A in CLO ) 2
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product topology, I is a compact Hausdorff space by the Tychonoff
theorem [20]. For A in 61“0 » let A, be the function in c(1)
given by

XA(X) = Xp s
and let Cf(I) be the subalgebra of C(I) generated by the functions
Ay - By the Stone-Weierstrass theorem [20, p.8], Cf(I) is dense in
c(I) . Any element of Cf(I) is of the form p{A ,...,AA )} for
some Al,...,An in (2,0 and some polynomial p ii n va?iables‘

By (1), the * homomorphism

P()‘- ]_, . ';KAn) ann> P(Al: . ')An)

from Cf(I) to CL is norm-decreasing, and so has a unique extension

to a norm-decreasing ¥ homomorphism

o (1) —= Q.

Tet ML be the kernel of @ and let X be the "hull" of TL ;
that is,

X=f{xel: f(x)=0 forall £ in ML} .

Now ‘rl C:C(I-X) ; that is, the restrictions of functions in YL to the
locally compact Hausdorff space I-X are continuous and vanish at
infinity. There 1s no point in I-X at which all of the functions in
(YL vanish, and since YU is an ideal in ¢(I) it separates points of
I-X . By the Stone-Weierstrass theorem,eYL is dense in C(I—X) .
Since it is closed in C(I) it is complete, and consequently

M = ¢(I-X) . That is,
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MN=1{fec(r): f(x) =0 for all x in X} .

Restriction to X gives a homomorphism C(I) —> C(X) whose kernel
is YL . By the Tietze extension theorem this mapping is surjective.
Hence C(I)/YL is isomorphic to C(X) . But C(I)/YL 1is also
isomorphic to a . Consequently there is an isomorphism
¢: ¢(X) —> (L , which is clearly a * isomorphism.

We need to show that ¢ is an isometry. If f 1is in C(X)
then ”f”2 - ff >0, so for some g in C(X)

Iel® - £F = &5 .

Consequently

I£1% - o(£)ale)™ = o(e)ole)” > 0,

so that ”¢(f)” < ”f“ . We may work the same argument backwards. If
A is in Q. then HAH2 = HAA*H , and ”AH( - AA* > 0 , so for some
B in QL

lall® - an™ = BB

2 * 5
(We know that B = (“AH - AAT)? s in CZ, since the square root
function is continuous on [O,”A”c] and therefore uniformly approxi-

mable by polynomials.) ConseqQuently

lal® - o7ta) o) = o7 @) HE®) > 0,

50 that HQ-I(A)H < flall . Thus both @ and @-l are norm-decreasing,
and @ 1is an isometry.
By the Riesz representation theorem every continuous linear

functional on C(X) is given by a complex measure u on X , and if
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the functional is multiplicative it is easy to see that u must be the
unit mass at some point x in X . The topology of X agrees with
the weak-¥ topology of the corresponding multiplicative linear func-
tionals. Thus the compact Hausdorff space X 1is describable in terms
of the Banach algebra C(X) , so that X is unique up to homeo-
morphism. QED

A representation p of C(X) , Tor X a compact Hausdorff
space, is a ¥ homomorphism p: C(X) — L( W) with p(1) = 1, where
ﬁﬂ- is a Hilbert space. The space %+ is called the representation
space of p and is denoted by W (p) . The argument used above to
show that ¢ was an isometry shows that any representation is norm-
decreasing. Two representations p1 and Po of C(X) on Hilbert

spaces 7+ 1 and 7‘2 are unitarily equivalent, pl ~ p2 , in case

there is a unitary operator U: ?+.l — ‘1%2 such that

po() = Up (£)U™

for all f in C(X) . We will classify all representations of c(x)
up to unitary equivalence. In this way we will find all commutative

* *

C algebras, up to unitary equivalence. Two C algebras a 1 and
a on Hilbert spaces 74 1 and 7*2 are called unitarily equivalent

2
in case there is a unitary operator U: ?*1>-—;= 7+2 such that

azzU QlU‘l )

*
Notice that two commutative C algebras can be ¥ isomorphic and
isometric without being unitarily equivalent; for example, the algebras

of all scalars on Hilbert spaces of different dimensions.
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A representation p of C(X) is cyclic in case there is a z
in ‘M(p) such that the set of all p(f)z with £ in C(X) is dense
in "H(p) , in which case 2z is called a cyclic vector for p .

If p is a measure on X then £ ann> Mf , where Mf is
multiplication by f on Lz(u) , is a representation of C(X) . We

shall denote it by pu

Theorem 2. If p 1is a measure on X then pH is a cyclic

representation of C(X) . Conversely, every cyclic representation p

of C(X) is unitarily equivalent to p“ for some measure u on X .

Proof. The function 1 is a cyclic vector for pu . To prove
the converse, let p Dbe a cyclic representation of C(X) with cyclic
vector z . Then u(f) = <z,p(f)z> is a positive linear functional
on C(X) and so is a measure on X . For f in C(X) define

Uf = p(f)z . We have

HUfH2 = <p(f)z,p(f)z> = <z,p(Fr)z> = flfledu .

In particular, if £ =0 a.e. [u] then Uf =0 . Thus U is an
isometry from the dense linear subspace C(X) of Ld(u) onto a dense
linear subspace of ?4(p) , and so extends uniduely to a unitary

2 . R .
operator U: L°(n) —> P (p) . Clearly U 1is a unitary equivalence
between D(~l and p . QED

Ir pl and P, are representations of C(X) , we say that

pl is a subrepresentation of 02 in case ?*(Dl)(: 7+ (92) and
py(flu = p(f)u

for all f in C(X) and u in 7+(pl) . We say that p, is
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contained in p2 5 pl C:pg , in case is unitarily equivalent to

y
a subrepresentation of Py -

If “l and u2 are measures on X Wwe say that “l is

absolutely continuous with respect to Ho oo Hq << Ko s in case for all

Borel sets B in X , ue(E) = 0 implies ul(E) = 0 . By the Radon-
Nikodym theorem, this is equivalent to saying that there is a unigue
positive element dul/du2 of Ll(pg) such that

a
Hy

fful=ff—d—u—2du

2

for all f in C{(X) (or for all positive Borel-measurable functions

f). The measures end u, are called equivalent, u, ~u, , in

Ky 2

case << Ho and Mo < “l .

-l
Theorem 3. ILet u and Vv be measures on X . Then pu C:pv

if and only if u << v , and pl~L ~ P, if and only if u = v

Proof. If upu <<v, let

- dp
Ut = £ /=5

for all f in Ld(u) . Then U 1is unitary from L°(u) %o a subspace

of Lg(v) , and for all g 1in C(X) ,

du. 2
- du fel
o, (8)Uf = &f //dv Upu(g)f ) e L°(u)

2
Thus o, C:pv . If u ™~V then the range of U is L7(v) and

P~ P,

Conversely, suppose that pM C:pv and let U be a unitary

2 .
equivalence of pu with a subrepresentation of pv . Then |U1| is
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a positive function in Ll(v) and for all h >0 in C(X) (so that

h = |f]° with £ in c(X)),
J hdu = f’f[gdu = f|Uf|2dv = f|Uf-l|2dv = f]fUl]Edv = J£]% o) %y .

Consequently, u << v and |Ul]2 = dufav . If P~ Py then
]Ul|2 >0 a.e. [v] and p=v . QED

Next we shall construct the Hilbert space M (X) of o-functions
on X . We write (f,u) for a pair with f in Lg(u) and P &
measure on X . We say that (f,u) and (g,v) are equivalent in case

for some AN with p << X and v << A,

du /EV
f /EX =8 /3 ae. [A]

If this holds for some A and we also have a measure A' with p << A\!

and Vv << A' then we claim that we also have

an av
£ E%' =g /E_' a.e. [A']

To see this, let A" be a measure with A << A" and A' << A" (for

example, we may take A" = MA') . Then
av
f /%% =g /ax a.e. [A],
of /aN /av /dA '
r a% ﬁn = g 'd-)\ 'd“}:n a.e. [>\'] 2

ki /%n =g ‘/gn a.e. [>‘-"] B)
/d an' av an!
£ -&;—' Er g o FE a.e. [A"] »
d av
f a%' =g I a.e. [At] ,
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with each equation implying the succeeding equation. It follows

from this that equivalence is an equivalence relation. A o-function
is an equivalence class of pairs (f,u) , the equivalence class of a
pair (f,u) being denocted by f/EJ . The set of all o-functions on X
is denoted by M (X) .

We add o-functions by defining

_ B m av _
f*/dp.+gw/d_‘\)—<f/d>\+ g/dx> Yax
where p << A and Vv <K A . This is independent of the choice of
representatives (f,u) and (g,v) and of the choice of A . We
define scalar multiplication by a(fv/du) = (af)¥dn . Then PH(X) forms

a vector space. We define an inner product on ?*’(X) by

<f/au, glav> = f?g/%t— /% an

where u << A and VvV << A . This is well-defined, is independent of
the choice of AN, and gives a strictly positive sesquilinear form on
H(x)

We claim that W (X) is a Hilbert space. It remains only to
show completeness. Let fn/EE; be a Cauchy sequence. There is a A

such that Hy << A for each “n in the sequence: it suffices to let

A=2X
n

r\)lr—'
=
T T
5 s
Eﬂ

dp
2
Then fn/ EXE is a Cauchy sequence in L (A) and so has a limit f

in L°(A) . Then f/dh 1is the limit of fnw/dun in PH(X) , and M (X)

is a Hilbert space.
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Notice that if i is any measure on X then f ann> f%ﬁﬁ gives
an isometric embedding of L?(u) into ?4’(X) . If u << v then the
image of I?(H) is isometrically embedded in the image of I?(v) . The
Hilbert space M (X) canonically pieces together all of the i spaces
which one may form, avoiding some non-uniqueness which would otherwise be
present in the discussion of commutative multiplicity theory. We shall
denocte the image of I?(u) in HW(X) by g[z(u) .

Two measures and H2 on X are called singular (with

!
respect to each other) in case there is a partition of X into two

Borel sets X, and X, such that “2<X1) = “1(X2) = 0 . This is the

same as saying that if v K u and v << L then v = 0 . We write
1 2

My L Wy 1in case u; and My are singular.

Theorem 4. Ef uw and VvV are measures on X then

u <<y if and only if JZ E(M) C ilz(v) s
22,

W L v if and only if i:e(u) L L 2(v)

p o~ v if and only if ie(u)

1l

Proof. The proofs of the first two statements follow the proof
of Theorem 3. The third statement is an equally easy exercise. QED

For all h in C(X) and fYdu in H(X) define

x(h)f Ydp = nfvau .

This is well-defined and = is a representation of C{X) . If one
defines the notion of a multiplicity-free representation, one can show
that = is the maximal multiplicity-free representation of C(X) .

We will build all representations of c(X) , up to unitary equivalence,
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out of multiples of subrepresentations of =t .
Tet ;f be the set of gll closed linear subspaces of ?F(X)
which are invariant under = . DNotice that if Y is in M so is A 1.
Elements of 7( will be called, simply, inveriant subspaces of ?+(X) .
If o= f/aﬁ and Vy = gVEV are in \}F(X) , we define their

product @ to be the measure given by

~ /du av
where W << A and vV << A . This is well-defined, and so is the

complex conjugate @ given by

o= Fan .
We see that the scalar product <o,y> 1s equal to fﬁw

Theorem 5. Iet @ be in M (X) . The smallest invariant sub-

space of pt(X) containing ¢ is iig(ﬁw)

Proof. Iet @ = f/du and let dk = @@ = |f]|“du . Iet

It

f

&= 7o

with the understanding that g = O where f

0. Then ¢ = g/ﬁ? .
Since g # 0 a.e. [k] -- in fact, |g| =1 a.e. [«] -- g is a cyclic
vector for the representation of C(X) on LE(K) . Therefore the
smallest invariant subspace of ?4’(X) containing @ contains

jiE(K) = 112(6@) , and since this is clearly an invariant subspace

of PH(X) , the theorem is proved.

The following fact is basic in our development of commutative

multiplicity theory.
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Theorem 6. If ?ﬂ_l and WYLg are in M and W?Ql n 77L2 =0
then M L1 ‘ng .

Proof. Suppose not. Then there are @l in 77117 and Py in
Wg with <@, # 0 . By Theorem 5, 5C2($1cpl) C "ml and
L 2(E-pgcpz) C mg . By Theorem k, c—plcpl and C_P2(p2 are not singular
since 3{2(51@1) and 112($2$2) are not orthogonal. Therefore there
is a non-zero measure u with u << 51@1 and W << @2@2 . By Theorem
b sgatn, £ 2(0) C L8G9 CM, ena L Ew) C L3G0,) C M,
which is a contradiction. QED

Iet 74-@ be a Hilbert space for each @ 1in an index set J .
By the direct sum §<ﬁ+-a is meant the Hilbert space of all functions

O nnn> v, from J to 8 as o such that Uy is in 7¥'a for each

n Q

and ”u” = 2 ”ua”C < e . Notice that all but a countable number of
04

components Uy must be O , for each u 1in é ﬁ#’a . If all of the

74‘& are equal to some fixed 7*' and the cardinality of J is n ,

the direct sum is denoted by n 7+ . If Py is a representation of

c(x) on M

the direct sum of the representations Py is the

a}

representation T p., on I P defined by e(f) = Z p (£) . The
aO‘ x a a &

operator sum converges strongly since HpaH E 1 for each « . If all

the are equal to some fixed p and the cardinality of J 1s n,

Po
the direct sum is denoted by np
If po is some representation of C(X) and we let

p = §Uopo then <Jp and 3p are unitarily equivalent even though

2 % 3 . However, we have the following result.
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Theorem 7. Iet u be a non-zero measure on X . EE np“ is

unitarily equivalent to mpH then n =m .

Proof. Choose notation so that n <m , and let
U: M (np“) —> %+‘(mpu) be the unitary equivalence.

Suppose first that n 1is infinite. Iet la be the vector in
%+'(np“) = n%*’(pu) = nLg(u) with component 1 in the O'th place and
all other components O . The np“(f)la generate a dense subspace of
%4'(np“) . Therefore the U(npp(f)la) = mpp(f)Ula generate a dense
subspace of W (mp“) . Only countably many components of Ul, are non-
zero, so m < fﬁon =n, and n=m .

Now let n be finite and let Uﬁa e the B'th component of

Ul, - If u in j+‘(np“) has components u, Wwith uy, in ox) ,

then Un has components

2 U_.u
a PEC

since U 1is a unitary equivalence. By continuity, this remains true

for arbitrary components Uy in Lg(u) . From the fact that U is

unitary we have

U, u

[
pa PO

Ugyvyd“ = f i uevgdp

=™

for all Uy and V7 in Lg(u) , and since they are arbitrary

é UBaU67 = 6&7 a.e. [u)

Therefore UB7(X) is a unitary, and consequently square, matrix for

almost every x . Thus n=nm . QED
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Suppose that for each cardinal n we have a space H—n in j{ R
such that C)"‘m 1 OH'n whenever n # m and such that the 7’* , Span
N (X)) . let x| W , be the restriction of = to H ., - Any repre-

sentation of the form p = Z n(x| M n) is called a standard represen-

tation. Our goal is to show that every representation is unitarily
equivalent to a unique standard representation. We begin by showing

uniqueness.

Theorem 8. Ir Py and P, are unitarily equivalent standard

representations of C(X) , then p, = 0y -

Proof. let CI % n(x| aﬁ'i) and py = 2 n( | H'Iel)

Suppose that “hl 111 N CHE 74 O . Then there 1s a non-zerco measure
with 5(2(#) C "H‘i'l n w ri . Thus nfz(u) Cn OH‘i . Now n iz(p.)
may be characterized as the set of all ¢ in Z k CH‘ i such that

&p << u . Therefore, if U is the unitary equivalence relating pl
and p,, Un iz(u) =m oﬁg(u) since the measure ¢ satisfies

[ foo = <Cp,pl(f)(p> = <Uq>,p2(f)Uq2> . By Theorem 7, n =m . Since the
LH’ i, QH'fl are each orthogonal and span ‘H- (%) , it follows that

"H‘iz‘Hi- QED

-~

let p Dbe a representation of C(X) on a Hilbert space ha B

and let R be the set of closed invariant linear subspaces of QH"
A foundation for p is a pair (MM, ‘7?]—) with M in X and V;L
in /;\< such that {x]M)) ~ (p| “;‘II\L) and such that if 7’?, is in 7‘(
and (ﬂ'?i ) C (p] '7??‘L) then )’(C m

The last condition is a maximality condition. In the case of

a standard representation & n(ﬂlwn) , one foundation is the pair
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("M, M) where YL is the span of the b , Wwith n>1 and M is

the set of vectors all of whose components, except the first, vanish (in
each summand).

Theorem 9. If p is a representation of C(X) then p has

a foundation. If p 1is not the O representation then the foundation

is not (0,0)

~

Proof. Iet p be a representation of C(X) on ™ . Let
the ((ma, V;\LO[) be a maximal family of pairs with each fﬁa% o,
Cma e® , (‘Y;’\La 5 ’:Q s WQL-WLB and??tal ;’25 whenever Q £ 8,
and with (n|)n,&) ~ (p] ﬁia) . This exists by Zorn's lemma. Iet
be the span of the m a and 3&1 the span of the €7ﬁ'a . We claim that
(Vn, 3&L) is a foundation for p

Clearly, (ﬁ[?n,)r» (p[?%b) .  Suppose that N oin X is suen
that (x| M) ~ (p} ()”\L) for some q?l in 7’; with ‘}’ZC fV’)\?,L . et
3/ =N n "‘m,‘L . Then ? is in KX . TFurthermore, (x| }) ~ (p] ;)
for some 5, in (3{ with jc ;\l C '}’;\ll , which contradicts the
maximality of our family unless é/ ~ 0. Since AN ME =0, N is
orthogonal to mt by Theorem 6. Thus cn}(:?n and (‘M , ?&i ) is a
foundation.

Suppose that p dis not the O representation; that is, suppose
that 7; % 0 . Then there is a u # 0 in H . et u be the
measure on X such that [ fdu = <u,p(f)u> for f in C(X) . Then
0 % 0, and 7w vrestricted to ;ig(u) is wnitarily egquivalent to o

restricted to the cyclic subspace generated by u . Thus (0,0) is not

a foundation for p . QED
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Theorem 10. Every representation of C(X) is unitarily

equivalent to a unique standard representation.

Proof. The uniqueness was proved in Theorem 8.

Consider a representation p of C(X) on M, and let
(7@10, QWLO) be a foundation for p . If (?n.s, 7715) has been
defined for all ordinals B < & , let ("ma, m a) be a foundation

for p restricted to

(= Mt

B<a
These foundations exist by Theorem 9. Also by Theorem 9, the span of
the 7ﬁ'5 with B < a 1is eventually the entire space 7} . Conse-
quently, (any ﬁia) = (0,0) for large enough ordinals O .
It follows easily fro& the definition of foundaetion that

mBCimOf whenever o < B .

let
“wmd
Ho=ml
and
NB: N ‘myn‘mé
7 <B
for B8 >0 . Clearly ‘H 8 is in ‘P< . Suppose & < B . Then

C B h B

K, n HB:,,QBWZ'/VH méc My N mézg_
By Theorem 6, the ?4 q are orthogonal. We claim that they span }F(X).
Suppose not. Then there is a @ % 0 such that ¢ 1s orthogonal to
all 74 a " In particular, @ L {}*O so that ¢ 1is in VYLO . It can-

not happen that ¢ is in alil )72a since they are eventually O .
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Figure 7.

Construction of the standard representation (Theorem 10).
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Iet © %be the least ordinal such that ¢ is not in'vn-6 . Then ©

is in

and ¢ 1is orthogonal to {l N mit , since this is just }+6 . There-
fore @ is in )L N 17L5 , which is a contradiction.
Now we shall construct the desired standard representation.

If B 1is an ordinal let !B| be its cardinal. Iet

ooz My
© 7 gl P

Then the “}+n are orthogonal and span }*(X) , so that X n(x] $+n)

is a standard representation.

From the definition of the ﬁqfs s we see that

(2) Mo n Hga=Hg, a<p
and that

';'maﬂ’HS:o, a> g,
and consequently by Theorem 6,
(3) Mol Mg a>p

Now p 1is clearly unitary equivalent to the direct sum of the

restrictions of = to I o
pr(TK‘cma) .
04

By'(E) and (3), and the fact that the §+ B are orthogonal and span

H @,
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Therefore
pméé(iﬂ%an%B)Z gé(n['man )
=z 5 H ) =2 |8l (x|] = 2 n(x] 9
2 3 Gty = ZIelal Ty = 2nlal By

This completes the proof.
We may state some corollaries of the main thecrem in a language
not involving o-functions. ILet p be a representation of C(X) . The

multiplicity function of p is the function p ~nn> mult(u) from

measures on X to cardinals such that mult(up) is the maximal cardinal
number m such that mpM C:p . For a standard representation

by (n]?4'n) it is easy to see that mult(u) is the maximal cardinal m
n

such that

ZEC o= M.
k>m

The following result is an easy corollary of this and Theorem 10.

Theorem 11. Two representations of C(X) are unitarily

equivalent if and only 1f they have the same multiplicity function.

Inseparable Hilbert spaces are of little interest. Suppose

that p 1is & representation of C(X) on a separable Hilbert space

~

CFF . Then the CFPH in the corresponding standard representation

]

are O for n > fu o - For n< ﬂﬁo 5

let the oy be a maximal

2 N
family of pairwise singular non-zero measures with o (ua) C F#I].
Then M , 1is the spen of the orthogonal spaces 11‘(ua) . There are

only countably many of these Py ? say ul,ug,... . Let
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1 M

=5+ )
*(n) K 1w (X)

This is a measure on X and Jﬂc(p(n)) = %+r1' The “(n) are pair-

wise singular. ILet u be the measure

1
1<nc< moe—nu(n)+u( NO)

Then we have the following theorem.

Theorem 12. Iet p be a representation of C(X) on a

separable Hilbert space. Then there are disjoint Borel sets En in

X, for 1 <n< fu 0’ and a measure W on X such that »p ii

unitarily equivalent to the direct sum of n times the multiplication

2
representation of C(X) on L (En,u) . Another such representation,

with sets Eﬁ and measure u' , is unitarily equivalent to the first

if and only if the measures p and u' are equivalent and En = EA

a.e.

Finally, we may classify self-adjoint operators. If A 1s a
self-adjoint operator on a Hilbert space, then arctan A 1s a bounded
self-adjoint operator. 1In fact, it has norm < % . The operator A
may be recovered from arctan A since A = tan arctan A . (The only
property of the arctan function we are using is that it is injective
with bounded range.) To classify arctan A we need only apply our

T %N
above results concerning representations of C(X) for X = [- =, E] .

Theorem 13. Iet A be a self-adjoint operator on a separable

Hilbert space f}k . There are Borel sets En in IR , for

l1<n< fu 0’ and a measure u on IR such that A is unitarily




6. COMMUTATIVE MULTIPLICITY THEORY 97.

equivalent to the direct sum of n times the multiplication operator

by the identity function on L‘(En,p) . Two self-adjoint operators A

and A' on a separable Hilbert space are unitarily equivalent if and

only if the corresponding measures p and ' are equivalent and the

corresponding sets En and Eé are equal a.e.

The notions of 74—(X) and multiplication by a continuous
function on it may be defined in the obvious way for a locally compact

Hausdorff space. We then have the following result.

Theorem 14. ILet A be a self-adjoint operator on a Hilbert

space. For each cardinal n there is a unique closed invariant sub-

space 7+'n of 74'(&2) such that the 7+—n are orthogonal and span

3+‘(I?) and such that A 1is unitarily equivalent to the direct sum

of n times the multiplication operator by the identity function on

g

7. Extensions of Hermitean operators

A Hermitean operator A on a Hilbert space }+ is called

essentially self-adjoint in case A is self-adjoint. A complex number

is in the resolvent set of an operator A in case A-A 1is injective

and (A-8)"Y is in L(R)

Theorem 1. Let A be a Hermitean operator on a Hilbert space.

Then the following are equivalent:

%
(i) A 1is essentially self-adjoint, A = A,

(ii) A =4 ,
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(iii) A" =4,
(iv) a* C A s
(v) R(i-n) and QQ(-i—A) are dense,

*
(vi) i and -i are not eigenvalues of A

(vii) 1 and -i are in the resolvent set of A& ,

(viii) (i-li)'l is in L(BF) and is normal,
is in L{(¥ ) and is normal.

—% * —- B3
Proof. Since A =A and A=A , (i), (ii), and (iii)

are clearly equivalent. They imply (iv), but since A is Hermitean,
if (iv) holds then A C A C A*C Py , so that (iv) implies (iii).
Thus (i) through (iv) are equivalent. By the spectrsl theorem, they
imply (v) through (ix). If we use the fsct that H(ii—A)uH > luli
for u in <17(A) we see that (v) through (vii) are equivalent. By
the argument given at the end of the proof of the spectral theorem
(Theorem 3, §5), they imply (viii) and (ix), which imply (ii). QED
If A 1is a Hermitean operator, the ordered pair of cardinal

numbers

(dim ,Qz(-i-A)l, dim Q(i-A)l)

is called the deficiency indices of A . Thus A 1is essentially self-

adjoint if and only if it has deficiency indices (0,0)

If A is in L{ W ) then the sesquilinear form
(u,v) ann> <u,Av>  1s bounded; that 1s, there is a constant ¢ < ®
such that

<u, Av>| < clalllvll wv e M.
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It 1s easy to see that every bounded sesqguilinear form arises in this
way. For unbounded operators and unbounded sesquilinear forms the
relationship is more subtle and more interesting.

Let Pk be a Hilbert space and let H‘l be a dense linear sub-

space which is itself a Hilbert space with a larger norm,
1
Hu”l > ol ue H-.

Iet M ~1 be the set of sll continuous linear fmctionals u ~mns> <u, v>
on 7+1'. {Notice that we use the same notation for the pairing between
Lo and 7+l as for the inner product in ™M .) We make M "1 into

a vector space by defining addition by

<u +»u2,v> = <u

1 > o+ <u2,v>

l)
and scalar multiplication by

<au, v> = §<u,v> R

NS
and we give %* the norm

“uH-l =  sup [<u,v>| . ////’

V”l E 1

Then $+§l is a Banach space. By the Riesz representation theorem

there is a unique bijective isometry

J: ?+1 _ %F_l

such that
a1

<u,v>l = <Ju,v> , u, v € &,

. 1 -1 .
where <, >1 denotes the inner product in H . The space 74 is

a Hilbert space with the inner product
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<u,v> | = <J_lu,J_lv> w,v e H -1

1 17
1 1 :
Thus J: H~ —> H is unitary.
If w is in M then u ~nn> <w,u> , for u in PH', is a

linear functional, and since

[, u>] < Hullllall < wllihll

it is in M -1 » with norm < Hw” . If it is the zero linear func-
tional then w = 0 , since °H 1 is dense in M . Thus we have a

R . W -1 . R
natural injection of into 7+ which diminishes norms. We shall

simply identify N‘ as a subspace of ‘H‘ -1 . Thus we have
a-1 1
HEIOH O
The space N L (end consequently M ) is dense in t)‘/'-l , for if not
there is a =z 1in cH-l which is orthogonal to all wu in °H-l :
ol L
<u,z> = 0, u € (H‘ .

Since (H 1 is dense in 7}' , this means that <u,z> = 0 for all u

in % and consequently z = O .

Theorem 2. Let rH— be a Hilbert space and let Wl be a dense

-1
linear subspace which is a Hilbert space in a larger norm. Ilet ZH“

and J: 'Hl — W -1 be as above. Iet JO be the restriction of J

to all u in },Ll such that Ju is in #+ . Then J, is a self-

adjoint operator on H‘ .

Proof. Since J: CH"L — H 1t s bijective,

Iy q&(JO) —> ‘M is bijective. Since
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ol > ol = ull, > fhal

Jé is in L(}-) with HJélH <1 . Since

<J51u,u> = <J'1u,JJ'

N> = [l ?

is real, Jél is self-adjoint. Therefore JO 1s self-adjoint. QED

Suppose that we have a dense linear subspace oD' of a Hilbert
space CH’ and that on ﬁ we have a sesquilinear form (u,v) ~n> <u,v>:L
such that

<u,u>) > <u,uws we .

Then we may define 7‘4‘ L to be the completion of s in this inner

product. Any sequence in ,8' which is a Cauchy sequence in the norm

i

natural norm-decreasing linear mapping CH'l —> N which is the

] is also a Cauchy sedquence in the norm ” H , so0 that we have a

identity on . However, this mapping need not be injective. An
- 2
example is the Hilbert space H’ = L°(mR) , ﬁ all continuous

functions with compact support, <u,v> = <u,v> + u(0 v(0)

Theorem 3 (Friedrichs extension theorem). Let A be a densely

defined linear operator on the Hilbert space H such that

<u,Au> > <u, >, uwe Jm) .

let H Y ope the completion of JJ(A) in the inner product <w, V> =

<u,Av> . Then the identity mepping £ (A) —> M extends by conti-

nuity to an injective norm-decreasing linear map H’l —>® , so that

we may identify - L as a dense linear subspace of :H which is a

Hilbert space in a larger norm. The operator JO of Theorem 2 is a
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self-adjoint extension of A .

Proof. Since the identity mapping <7 (A) —> H is norm-
decreasing, it extends by continuity to a unique norm-decreasing map-

ping ¢ in L(# l,7+ ) . For all u and v in iy(A) B

<u, v, = <u,Av> = <tu,Av> .

1
R . Loy 1 .

By continuity, this holds for all u in M and v in x7(A) .

Therefore if tu = O, u is orthogonal in N = to o (A) and so

is O . Thus t is injective. It is clear that A C:JO . QED

The operator Jo is called the Friedrichs extension of A .

The cperator A may have other self-adjoint extensions, but the
Friedrichs extension is constructed in a canonical way and is of great
importance in many applications. A Hermitean operator A is called

semi-bounded In case for some c¢ < w ,
<u,Au> > -c<u,u> we ol ().

If A 1s semi-bounded then A+c+l satisfies the hypotheses of

Theorem 3. If JO is the Friedrichs extension of A+c+l then Jo—c—l

is a self-adjoint extension of A , called its Friedrichs extension.

Thus every semi-bounded Hermitean operator has a natural self-adjoint

extension.
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8. Sums and Lie products of self-adjoint operators

A theorem of Paul Chernoff [23] gives us the result needed in
order to discuss the one-parameter unitary group generated by the sum
or Lie product of two self-adjoint operators. The natural context for
the discussion is given by the notion of a contraction semigroup on a
Banach space.

let x be a Banach space. A contraction semigroup on .% is

a family of operators p' in L(¥ ), for 0<t <w, such that

P9 <1, 29 =1, P%° - P% | ena

(1) lim Ptu:u, we X
t =0

This is usually called a "contraction semigroup of class (C.) ", the

0
last phrase referring to the strong continuity condition (1). However,
we will deal only with such semigroups.

An example of a contraction semigroup is eltA , considered for

t >0, where A 1is a self-adjoint operator on a Hilbert space.

The infinitesimal generator of a contraction semigroup Pt is

the operator A defined by

h
. -1
Au = 1lim 5

h -0

u o,

on the domain JJ(A) of all u in X for which the limit exists.

Theorem 1. Iet Pt be a contraction semigroup with infinites-

imal generator A . Then A 1is a closed, densely defined operator and

for all AN with Re >0, A 1is in the resolvent set of A ,
1
|

f(x-8)"" < 1/Re A, =nd
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(2) (n-A

) u = fg e Mptugt

for all u EE X

Proof (ef. the proof of Stone's theorem, Theorem L4, §5).
Iet Re A> 0 . 'Then the integral in (2) clearly converges and defines

an operator R, in IL{ X ) with HRKH < 1/Re N . We have

A

f°° e—}\.‘t t+h

P At - fg e Mpt

udt}/h

e o MER)EE 0y fg e Mpbtuaty/m

1l
~

h oAbt -Mt-h) o -at
[l e =

Prudt + f; £ pluat

—> -u + fg Ke_xtPtudt = -u + kau .

Therefore ‘QZ(RK) C J(a) ana AR, =-14)R, ; that is, (M-AR =1

Also, if u is in A (A) then, as is easily seen, Py is in 5 (4)

and APtu = PtAu , s0 that

R,Au = f: e Mptauat
=3 e Maptuat - A I e Mpluat = AR, .

Thus R,(A-A)u =u for u in LT (8) . Together with the fact that

(X—A)RK = 1, this means that

s Re A > 0 .

Now

1im MR.ou = lim A J2 e Mptuat = u ve ¥,

AN = AN = oo 0
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and esch AR,u is in LF(a) . Thus A is densely definmed. Since
()x—A)_l is in L(X ), (?x-A)_l is closed, so A-A is closed, and
so A 1s closed. QED

The Hille-Yosida theorem [26] asserts that if A 1is a closed,
densely defined operator on a Banach sgpace such that A is in the
resclvent set of A for N> 0 with ”(K-A)-lu < 1/% then A 1is the
infinitesimal generator of a unigue contraction semigroup.

Let A Dbe an operator on the Banach space ¥ . & core of A
is a linear subspace A of I?(A) such that A and the restriction
of A to £ have the same closure: & = ET:E} . For example, if A
is a self-adjoint operator on a Hilbert space, a core of A is any
linear subspace A of J7(A) such that the restriction of A +to l?
is essentially self-adjoint (for if one self-adjoint operator is con-
tained in another, they are equal).

Theorem 2. Let An , for n=1,2,3,..., and A Dbe the infin-

t

itesimal generators of the contraction semigroups PE P . Let

and
dﬁr be a core of A , and suppose that for all u in Jj', u is in

,Cj(An) for n sufficiently large and

(3) Anu —3> Au .
Then for all u in x s
(4) P;Clu —> Py

uniformly for t in any compact subset of [0,)

Proof. Tet Re A > O . We claim that for all u in X

(5) (-h ) —> (ra) 7

u o
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-1

Since the (X-An) © are bounded in norm uniformly in n (by 1/Re A),
we need only show that (5) holds for u in a dense set. Now (A-A)oL
is dense because JJ is a core and (A-A) oLJ(A) = X . Therefore we

may assume that u = (A-A)v with v in o/ . Then

T0wa ) )™l = s )™ s )v - vl

SN O-a )T v ¢ (Aen )T _-8)v - vl

1l

102 (8 -a)vl < g e 20wl

and this tends to O by (3). Thus (5) holds.

Let uw be in 17 and let

(qu - Ptu)e_t s t

v
e

0, t <0 .

Sinice A 1is densely defined and dtr is a core, Jﬁ_is dense. There-
fore if we show that wn(t) converges uniformly in t to O , we are
through, since the PE are bounded in norm uniformly in n (by 1)

Now

1 t -t t t o, -t
— o (t) = (PnAnu - PAu)e " - (Pnu - Pu)e

for t >0, and this is bounded in norm uniformly in n and t , by
(3). Thus the @n(t) are equi-uniformly continuous. Therefore, in
order to show that @n(t) — 0 uniformly in t we need only show
that (@n*p)(t) —> 0 uniformly in t , for all €~ functions

p: R — R with compact support, where @n*p is the convolution

(o x0)(t) = [7 @ (t-s)p(s)as
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The Fourier transform of @n*p is @np ; Where

fpn(x) = [ cpn(t)e_i}\tdt = (1+i>\.-An)_lu (14 in-n)"h

and

1
is in L (R) . By the Iebesgue dominated convergence theorem and the
Fourier inversion formula,

(o *0)(t) = Ei;L? 7 cﬁn(x)p(x)ei}‘tdx —> 0

uniformly in t . QED
Theorem 3. ILet T be in L( ¥ ) with Tl <1 . Then

t A et(T-l)

is a contraction semigroup. For all u in X B

(6) 1T gyl <ol (-1l

Proof. For t >0,

”et(T—l)” _ ”e—t OZQ tk"fk” < e—t

(T-1) is continuous from [0,»)] to L(£ )

The function t ~n> e
and a fortiori it 1s strongly continuous, so it is a contraction semi-

group -

For any u in X s
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e™(T-1) gy

o Kk w _Kk
le™ = Zo (el <e™ = I I(rrtul
k=0 7' k=0 7'

1l

o k o k
o 10 B O e N s | [CEp e
k=0 7 k=0 ~°

IA

By the Schwarz inequality, applied to the sequences |k-n| and 1 with

the weights nk/k! s

ool
k
e ™™ = % |k-n| < Jo(n)
k=0
where
o nk ~
o(n) =e™ = X (kx-n)
k=0 =
We see that
ap(n)
dn =1

and 9(0) = 0, so that ¢(n) =n . This proves (6). QED

Theorem 4 (Chernoff's theorem). Let F: [0,0) —> L( £ ) with

IP(t) <1 for a1l t in [0,) and F(0) =1 . Let P° be a con-

traction semigroup on ¥ with infinitesimal generator A , and let o

be a core of A . Suppose that

1lim F(E)_lu:Au, we .
h -0

Then for all wu in % 5

(M 1im F(E)% = Phu
n—w 2

uniformly for t in any compact subset of [O,oo)
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Proof. Fix t > 0 and let
. n t
¢, = E(F(H) -1) .

By Theorem 3, % Cn is the infinitesimal generator of a contraction
semigroup, and since t/n >0, Cn is itself the infinitesimal
generator of the contraction semigroup
tCn
T oy e

By Theorem 2, for all wu in X

tC £

e "w—> P

uniformly for t in any compact subset of [O,oo) . But by Theorem 3,

F(E) -1

)

tC
Ie ™ - w) )l <Vall (s - 1)l < 2

~Jn

which converges to O {(uniformly for t in any compact subset of [0,w))
for u in oD‘ Thus (7) holds for a dense set of u's and hence for

n
all u in * , since the F(%) are bounded in norm by 1. QED

Theorem 5 (Trotter product formula). ILet

A, B, and A+ B

be the infinitesimal generators of the contraction semigroups

»%,q%, ana R'

on the Banach space )\6 - Then for all wu in % s

t T
- Zin

(8) R = lim (Pn P,
n —w
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uniformly for t in any compact subset of [0,») .

Proof. L5 (A+B) = J(A) N L(B) 1is a core for A+B . Iet

F(t) = PXQ° . For u in oI (A+B) ,

t

F(t)u = PtQ u = Pt(u+ tBu+o(t)) = u+tAu+ tBu+o(t)

Therefore (8) holds by Theorem 4. QED

We state a special case of this explicitly.

Theorem 6. Ilet A and B be self-adjoint operators on a

Hilbert space ?+ , and suppose that A+B 1is essentially self-adjoint.

Then for all u in :}% s

elt(A+B)u = lim e e u o,

n —ow

uniformly for + in any compact subset of (-w,0) .

An operator A on a Hilbert space is called skew-adjoint in
*
case 1A 1is self-adjoint; that is, in case A = -A . It 1s called

essentially skew-adjoint in case 1A 1is essentially self-adjoint;

*
that is, in case A = -A . TIf A 1is skew-adjoint then A and -A
R . . . tA ~-tA
are infinitesimal generators of contraction semigroups e and e
which together make up the strongly continuous one-parameter unitary

t.
group e A for -0 <t < w .

If A and B are two operators, then
[A,B] = AB-BA

is called their Lie product or commutator. Notice that if A and B

are in I(F}F) and are skew-adjoint so is their Lie product.
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Theorem 7. Iet A and B be skew-adjoint operators on a

Hilbert space N— , and suppose that the restriction of [A,B] to

L = L(aB) N L(BA) N 90'(A2) n OC"(BE) is essentially skew-adjoint.

Then for all u in CH' B

t 5 t /T
_/:A —/:B /:A Zg \n
(9) et[A,B u e n R n o n e/n u

= 1lim
n -«

2

uniformly for t 1in any compact subset of [0, )

Proof. Since [A,B][ﬂ is essentially skew-adjoint, [A,B],
which has domain ﬁ(AB) N L (BA) , is essentially skew-adjoint, and

they have the same closure A,Bl , which has -5 as a core. Let

F(t) = e—tAe—tBetAetB ]

ForuinoD—,

L2

2
o 2

" o .

(1+ tA+;—- AT+ tB+ teAB+~g— B )u+ o(t5)

1+tB+

il

- - 2 2
F(t)u e tAe tBetA( Bd)u+ o(t )

-tA -tB
e e

2
-tA t° 2
e

2 2 2

2-t‘BA+Z— A2

(1-ta+2 2% tB+t%aB+ & BS+ ta - toA

z
> 5 +tB-t 4B

1!

)

z

- t°BS+ t°AB + 2— Bg)u + o(t)

(1 + t°[a,B])u + o(t2)

By Chernoff's theorem, (9) holds. QED

1-tB+ 4 B+ tA - tCBA+;— A%+ tB- t‘B‘+t‘AB+Z— B )u+o(t

2



112. I. FLOWS

Notes and references

The parallel between quantum mechanics and classical mechanics
is much closer if one considers only the Hamiltonian formulation of
classical mechenics. We shall not give this formulation here, as this

chapter is devoted to kinematics only. See [1], [2], and [3].

§1. As general refrences see [4], [5], and [6].
§2. see [4], [5], [7], [8].

§3. see [9]1, [101, [11], and [7, Chapter IX]. A by-product

ny

of our proof of the Sternberg linearization theorem was a proof of the
existence of the local stable and unstable manifolds. This can be
proved directly for any elementary critical point without restrictive
smoothness assumptions, see [T].

For a discussion of problems relating to the local structure
of Hamiltonian vector fields in the neighborhood of a critical point,
see [1] ana [11].

Linearization of analytic vector fields is studied in [29].

§h. See [13, pp.30-361.

§5. TFor accounts of Hilbert space, see [14] and [15]. The
first two chapters of [16] have an account of bounded operators on
Hilbert space.

Another approach to the spectral theorem, in some ways pref-
erable to the one we gave, is the following. First one proves Stone's
theorem, perhaps deducing it as a special case of the Hille-Yosida
theorem concerning contraction semigroups on a Banach space. Then

given a self-adjoint operator A one has the strongly continous one-
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parameter unitary group U(t) with infinitesimal generator 1A . If
u is in the Hilbert space, then t ~nn> (u,U(t)u) is a continuous
function of positive type, and so by Bochner's theorem there is a unique

measure | = “u such that

(w,u(e)u) = 1%, e™au(n) .

Ilet 74—u be the smallest closed linear subspace containing uw and
invariant under U(t) . Then A on 7+11 is unitarily equivalent to
multiplication by the identity function A ~n> A on Lgﬁﬂi,u)

A reference for measure theory is [17]. If X is a locally
compact Hausdorff space, we always use the term "measure" to be synony-
mous with Radon measure; that is, a regular Borel measure which is

finite on all compact sets.

§6. There is an account of commutative multiplicity theory in
[16, Chapter IITI]. For o-functions, see [18]. Theorem 1 is usually

proved by introducing the maximal idesl space, see [20].

§7- See [lh]) [15]) [21]: [221

§8. Trotter [24] shows that the strong convergence of

-1 t

(k—An) 0 (K—A)-l implies the strong convergence of Pﬁ to P
Chernoff [23] by-passes this difficult result, but the main point of

his approach is the use he makes of the estimate (6) of Theorem 3.
* * *

We have discussed vector fields and their flows only locally.
For the notions of a differentiable manifold and the flow generated by
a vector field, see [2], [5], [6], or [27]. We shall use the term

"manifold" to mean a finite dimensional, Hausdorff, second countable
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differentiable manifold. The Hausdorff property ensures that the flow
generated by a vector field on a manifold is unique. However, the flow
is in general only locally defined, as the orbit of a point may run off
the marifld (if it is not compact) at a finite time. A vector field X
on a manifold M which generates a one-parameter group of diffeomor-
phisms of M 1is called complete. The vector fields of interest in
dynamics are almost never complete. For example, in the two body
problem with Newtonian gravitational attraction, if the angular momentum
is zero, the two bodies will collide with infinite velocities at some
finite time. However, this happens only for a set of initial conditions
in phase space M of measure O . For a finite dimensional menifold

M , the notion of a set of measure O has an invariant meaning. We

say that a vector field X on M 1s almost complete in case for each

t > 0 there 1s a closed set Et of measure O , diffeomorphisms U(s)
from M—Et to an open subset of M for |sl <t such that

1)U(52)X = U(sl+»se)x for x in M-E, and |sl|,|s2|,|sli-sz| <t
and such that for each x in M-E, , U(s)x 1is tangent to Xx at

t

s =0 .

Stone's theorem is an analogue of the existence and uniQueness
theorem for flows generated by a vector fleld. If X 1is a complete
or almost complete vector field on the manifold M which has a smooth
measure u invariant under the corresponding flow U(t) , then
f ann> U(t)f where (U{t)f)(x) = £(U(-t)x) 1is a strongly continuous
one-parameter unitary group on LE(M,u) . More generally, one may form

the Hilbert space (}+O(M) of all o-functions fVa; such that in each
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local coordinate system we may choose p to be smooth (see [19]).
This 1s an intrinsic notion, so diffeomorphisms of M induce unitary
operators on ‘%FO(M) . Vector fields also act on }FO(M) , with the
domain of all smooth o-functions, (those for which we may choose both
f and u to be smooth). Consequently the enveloping algebra of the
vector fields, which 1s the algebra of partial differential operators,
acts on ?+O(M) . This should be a rewarding subject for investigation.

Commutative multiplicity theory is rather tedious, but it does
accomplish a complete classification of self-adjoint operators. The
classification of vector fields is much more difficult. The Sternberg
linearization theorem classifies the generic vector field locally, but
it leaves out the most interesting case, that of Hamiltonian vector
fields. Recently there has been a lot of attention devoted to the
investigation of generic global properties of vector fields on mani-
folds, see [28] ana [2].

I do not know of any analogue of the Friedrichs extension
theorem in classical Hamiltonian mechanics.

Iet M be a differentiable manifold (phase space), x a point
of M (state of the system), f a real function on M (dynamical
variable). Then the value of the dynamical varisble f , given that
the state of the system is x , is f(x)

Tet M Dbe a Hilbert space, u a unit vector (state of the
quantum mechanical system), A a self-adjoint operator on ® (dynem-
ical variable). Then the value of the dynamical variable A , if an

observation is made to determine its value, may be any number in the
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spectrum of A , and the probability that it will lie in a Borel set

BC R , given that the state of the system is u , is

<u, EBu> B

vhere Eg is the spectral projection XB(A) .
Iet U(t) be a one-parameter group of diffeomorphisms of M,
or of unitary operators on }F . We may consider the action of U(t)

on M (or W ), keeping the dynamical varisbles fixed. This is

called the Schrddinger picture. Or we may keep the state of the system

fixed and let U(t) act on the dynamical varisbles via f ~nn> U(t)Ff

(or A ann> U(-t)AU(t)). This is called the Heisenberg picture.
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