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Preface to the Second Edition

On July 2, 2001, I received an email from Jun Suzuki, a recent grad-
uate in theoretical physics from the University of Tokyo. It contained a
request to reprint “Dynamical Theories of Brownian Motion”, which was
first published by Princeton University Press in 1967 and was now out
of print. Then came the extraordinary statement: “In our seminar, we
found misprints in the book and I typed the book as a TeX file with mod-
ifications.” One does not receive such messages often in one’s lifetime.

So, it is thanks to Mr. Suzuki that this edition appears. I modified
his file, taking the opportunity to correct my youthful English and make
minor changes in notation. But there are no substantive changes from
the first edition.

My hearty thanks also go to Princeton University Press for permis-
sion to post this volume on the Web. Together with all mathematics
books in the Annals Studies and Mathematical Notes series, it will also
be republished in book form by the Press.

Fine Hall
August 25, 2001
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Chapter 1

Apology

It is customary in Fine Hall to lecture on mathematics, and any major
deviation from that custom requires a defense.

It is my intention in these lectures to focus on Brownian motion as a
natural phenomenon. I will review the theories put forward to account
for it by Einstein, Smoluchowski, Langevin, Ornstein, Uhlenbeck, and
others. It will be my conjecture that a certain portion of current physical
theory, while mathematically consistent, is physically wrong, and I will
propose an alternative theory.

Clearly, the chances of this conjecture being correct are exceedingly
small, and since the contention is not a mathematical one, what is the
justification for spending time on it? The presence of some physicists in
the audience is irrelevant. Physicists lost interest in the phenomenon of
Brownian motion about thirty or forty years ago. If a modern physicist is
interested in Brownian motion, it is because the mathematical theory of
Brownian motion has proved useful as a tool in the study of some models
of quantum field theory and in quantum statistical mechanics. I believe
that this approach has exciting possibilities, but 1 will not deal with it
in this course (though some of the mathematical techniques that will be
developed are relevant to these problems).

The only legitimate justification is a mathematical one. Now “applied
mathematics” contributes nothing to mathematics. On the other hand,
the sciences and technology do make vital contribution to mathematics.
The ideas in analysis that had their origin in physics are so numerous and
so central that analysis would be unrecognizable without them.

A few years ago topology was in the doldrums, and then it was re-
vitalized by the introduction of differential structures. A significant role
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in this process is being played by the qualitative theory of ordinary dif-
ferential equations, a subject having its roots in science and technology.
There was opposition on the part of some topologists to this process, due
to the loss of generality and the impurity of methods.

It seems to me that the theory of stochastic processes is in the dol-
drums today. It is in the doldrums for the same reason, and the remedy
is the same. We need to introduce differential structures and accept the
corresponding loss of generality and impurity of methods. I hope that a
study of dynamical theories of Brownian motion can help in this process.

Professor Rebhun has very kindly prepared a demonstration of Brown-
ian motion in Moffet Laboratory. This is a live telecast from a microscope.
It consists of carmine particles in acetone, which has lower viscosity than
water. The smaller particles have a diameter of about two microns (a
micron is one thousandth of a millimeter). Notice that they are more
active than the larger particles. The other sample consists of carmine
particles in water—they are considerably less active. According to the-
ory, nearby particles are supposed to move independently of each other,
and this appears to be the case.

Perhaps the most striking aspect of actual Brownian motion is the ap-
parent tendency of the particles to dance about without going anywhere.
Does this accord with theory, and how can it be formulated?

One nineteenth century worker in the field wrote that although the
terms “titubation” and “pedesis” were in use, he preferred “Brownian
movements” since everyone at once knew what was meant. (I looked up
these words [1]. Titubation is defined as the “act of titubating; specif.,
a peculiar staggering gait observed in cerebellar and other nervous dis-
turbance”. The definition of pedesis reads, in its entirety, “Brownian
movement”.) Unfortunately, this is no longer true, and semantical con-
fusion can result. I shall use “Brownian motion” to mean the natural
phenomenon. The common mathematical model of it will be called (with
ample historical justification) the “Wiener process”.

I plan to waste your time by considering the history of nineteenth
century work on Brownian motion in unnecessary detail. We will pick
up a few facts worth remembering when the mathematical theories are
discussed later, but only a few. Studying the development of a topic in
science can be instructive. One realizes what an essentially comic activity
scientific investigation is (good as well as bad).
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Chapter 2

Robert Brown

Robert Brown sailed in 1801 to study the plant life of the coast of Aus-
tralia. This was only a few years after a botanical expedition to Tahiti
aboard the Bounty ran into unexpected difficulties. Brown returned to
England in 1805, however, and became a distinguished botanist. Al-
though Brown is remembered by mathematicians only as the discoverer
of Brownian motion, his biography in the Encyclopaedia Britannica makes
no mention of this discovery.

Brown did not discover Brownian motion. After all, practically anyone
looking at water through a microscope is apt to see little things moving
around. Brown himself mentions one precursor in his 1828 paper [2] and
ten more in his 1829 paper [3], starting at the beginning with Leeuwen-
hoek (1632-1723), including Buffon and Spallanzani (the two protago-
nists in the eighteenth century debate on spontaneous generation), and
one man (Bywater, who published in 1819) who reached the conclusion
(in Brown’s words) that “not only organic tissues, but also inorganic sub-
stances, consist of what he calls animated or irritable particles.”

The first dynamical theory of Brownian motion was that the particles
were alive. The problem was in part observational, to decide whether
a particle is an organism, but the vitalist bugaboo was mixed up in it.
Writing as late as 1917, D’Arcy Thompson [4] observes: “We cannot,
indeed, without the most careful scrutiny, decide whether the movements
of our minutest organisms are intrinsically ‘vital’ (in the sense of being
beyond a physical mechanism, or working model) or not.” Thompson
describes some motions of minute organisms, which had been ascribed to
their own activity, but which he says can be explained in terms of the
physical picture of Brownian motion as due to molecular bombardment.
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On the other hand, Thompson describes an experiment by Karl Przibram,
who observed the position of a unicellular organism at fixed intervals. The
organism was much too active, for a body of its size, for its motion to
be attributed to molecular bombardment, but Przibram concluded that,
with a suitable choice of diffusion coefficient, Einstein’s law applied!

Although vitalism is dead, Brownian motion continues to be of interest
to biologists. Some of you heard Professor Rebhun describe the problem
of disentangling the Brownian component of some unexplained particle
motions in living cells.

Some credit Brown with showing that the Brownian motion is not vital
in origin; others appear to dismiss him as a vitalist. It is of interest to
follow Brown’s own account [2] of his work. It is one of those rare papers
in which a scientist gives a lucid step-by-step account of his discovery and
reasoning.

Brown was studying the fertilization process in a species of flower
which, I believe likely, was discovered on the Lewis and Clark expedi-
tion. Looking at the pollen in water through a microscope, he observed
small particles in “rapid oscillatory motion.” He then examined pollen
of other species, with similar results. His first hypothesis was that Brow-
nian motion was not only vital but peculiar to the male sexual cells of
plants. (This we know is not true—the carmine particles that we saw
were derived from the dried bodies of female insects that grow on cactus
plants in Mexico and Central America.) Brown describes how this view
was modified:

“In this stage of the investigation having found, as I believed, a pecu-
liar character in the motions of the particles of pollen in water, it occurred
to me to appeal to this peculiarity as a test in certain Cryptogamous
plants, namely Mosses, and the genus Fquisetum, in which the existence
of sexual organs had not been universally admitted. ... But I at the same
time observed, that on bruising the ovules or seeds of Equisetum, which at
first happened accidentally, I so greatly increased the number of moving
particles, that the source of the added quantity could not be doubted. I
found also that on bruising first the floral leaves of Mosses, and then all
other parts of those plants, that I readily obtained similar particles, not
in equal quantity indeed, but equally in motion. My supposed test of the
male organ was therefore necessarily abandoned.

“Reflecting on all the facts with which I had now become acquainted,
I was disposed to believe that the minute spherical particles or Molecules
of apparently uniform size, ... were in reality the supposed constituent
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or elementary molecules of organic bodies, first so considered by Buffon
and Needham ... ”

He examined many organic substances, finding the motion, and then
looked at mineralized vegetable remains: “With this view a minute por-
tion of silicified wood, which exhibited the structure of Coniferae, was
bruised, and spherical particles, or molecules in all respects like those
so frequently mentioned, were readily obtained from it; in such quantity,
however, that the whole substance of the petrifaction seemed to be formed
of them. From hence I inferred that these molecules were not limited to
organic bodies, nor even to their products.”

He tested this inference on glass and minerals: “Rocks of all ages,
including those in which organic remains have never been found, yielded
the molecules in abundance. Their existence was ascertained in each of
the constituent minerals of granite, a fragment of the Sphinx being one
of the specimens observed.”

Brown’s work aroused widespread interest. We quote from a report
[5] published in 1830 of work of Muncke in Heidelberg:

“This motion certainly bears some resemblance to that observed in
infusory animals, but the latter show more of a voluntary action. The idea
of vitality is quite out of the question. On the contrary, the motions may
be viewed as of a mechanical nature, caused by the unequal temperature
of the strongly illuminated water, its evaporation, currents of air, and
heated currents, &c. ”

Of the causes of Brownian motion, Brown [3] writes:

“I have formerly stated my belief that these motions of the particles
neither arose from currents in fluid containing them, nor depended on that
intestine motion which may be supposed to accompany its evaporation.

“These causes of motion, however, either singly or combined with
other,—as, the attractions and repulsions among the particles themselves,
their unstable equilibrium in the fluid in which they are suspended, their
hygrometrical or capillary action, and in some cases the disengagement
of volatile matter, or of minute air bubbles,—have been considered by
several writers as sufficiently accounting for the appearance.”

He refutes most of these explanations by describing an experiment in
which a drop of water of microscopic size immersed in oil, and containing
as few as one particle, exhibits the motion unabated.

Brown denies having stated that the particles are animated. His the-
ory, which he is careful never to state as a conclusion, is that matter is
composed of small particles, which he calls active molecules, which exhibit
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a rapid, irregular motion having its origin in the particles themselves and
not in the surrounding fluid.

His contribution was to establish Brownian motion as an important
phenomenon, to demonstrate clearly its presence in inorganic as well as
organic matter, and to refute by experiment facile mechanical explana-
tions of the phenomenon.

References
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Chapter 3

The period before Einstein

I have found no reference to a publication on Brownian motion be-
tween 1831 and 1857. Reading papers published in the sixties and sev-
enties, however, one has the feeling that awareness of the phenomenon
remained widespread (it could hardly have failed to, as it was something
of a nuisance to microscopists). Knowledge of Brown’s work reached lit-
erary circles. In George Eliot’s “Middlemarch” (Book II, Chapter V,
published in 1872) a visitor to the vicar is interested in obtaining one of
the vicar’s biological specimens and proposes a barter: “I have some sea
mice. ... And I will throw in Robert Brown’s new thing,—Microscopic
Observations on the Pollen of Plants,—if you don’t happen to have it
already.”

From the 1860s on, many scientists worked on the phenomenon. Most
of the hypotheses that were advanced could have been ruled out by con-
sideration of Brown’s experiment of the microscopic water drop enclosed
in oil. The first to express a notion close to the modern theory of Brown-
ian motion was Wiener in 1863. A little later Carbonelle claimed that the
internal movements that constitute the heat content of fluids is well able
to account for the facts. A passage emphasizing the probabilistic aspects
is quoted by Perrin [6, p. 4]:

“In the case of a surface having a certain area, the molecular col-
lisions of the liquid which cause the pressure, would not produce any
perturbation of the suspended particles, because these, as a whole, urge
the particles equally in all directions. But if the surface is of area less
than is necessary to ensure the compensation of irregularities, there is no
longer any ground for considering the mean pressure; the inequal pres-
sures, continually varying from place to place, must be recognized, as the

9
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law of large numbers no longer leads to uniformity; and the resultant will
not now be zero but will change continually in intensity and direction.
Further, the inequalities will become more and more apparent the smaller
the body is supposed to be, and in consequence the oscillations will at
the same time become more and more brisk ... ”

There was no unanimity in this view. Jevons maintained that pedesis
was electrical in origin. Ord, who attributed Brownian motion largely
to “the intestine vibration of colloids”, attacked Jevons’ views [7], and I
cannot refrain from quoting him:

“I may say that before the publication of Dr. Jevons’ observations I
had made many experiments to test the influence of acids [upon Brownian
movements|, and that my conclusions entirely agree with his. In stating
this, I have no intention of derogating from the originality of of Professor
Jevons, but simply of adding my testimony to his on a matter of some
importance. ...

“The influence of solutions of soap upon Brownian movements, as
set forth by Professor Jevons, appears to me to support my contention
in the way of agreement. He shows that the introduction of soap in
the suspending fluid quickens and makes more persistent the movements
of the suspended particles. Soap in the eyes of Professor Jevons acts
conservatively by retaining or not conducting electricity. In my eyes it is
a colloid, keeping up movements by revolutionary perturbations. ... It is
interesting to remember that, while soap is probably our best detergent,
boiled oatmeal is one of its best substitutes. What this may be as a
conductor of electricity I do not know, but it certainly is a colloid mixture
or solution.”

Careful experiments and arguments supporting the kinetic theory were
made by Gouy. From his work and the work of others emerged the fol-
lowing main points (cf. [6]):

1. The motion is very irregular, composed of translations and rota-
tions, and the trajectory appears to have no tangent.

2. Two particles appear to move independently, even when they ap-
proach one another to within a distance less than their diameter.

3. The motion is more active the smaller the particles.
4. The composition and density of the particles have no effect.

5. The motion is more active the less viscous the fluid.



THE PERIOD BEFORE EINSTEIN 11

6. The motion is more active the higher the temperature.
7. The motion never ceases.

In discussing 1, Perrin mentions the mathematical existence of no-
where differentiable curves. Point 2 had been noticed by Brown, and it is
a strong argument against gross mechanical explanations. Perrin points
out that 6 (although true) had not really been established by observation,
since for a given fluid the viscosity usually changes by a greater factor
than the absolute temperature, so that the effect 5 dominates 6. Point 7
was established by observing a sample over a period of twenty years,
and by observations of liquid inclusions in quartz thousands of years old.
This point rules out all attempts to explain Brownian motion as a non-
equilibrium phenomenon.

By 1905, the kinetic theory, that Brownian motion of microscopic par-
ticles is caused by bombardment by the molecules of the fluid, seemed the
most plausible. The seven points mentioned above did not seem to be
in conflict with this theory. The kinetic theory appeared to be open to
a simple test: the law of equipartition of energy in statistical mechan-
ics implied that the kinetic energy of translation of a particle and of a
molecule should be equal. The latter was roughly known (by a determina-
tion of Avogadro’s number by other means), the mass of a particle could
be determined, so all one had to measure was the velocity of a particle
in Brownian motion. This was attempted by several experimenters, but
the result failed to confirm the kinetic theory as the two values of kinetic
energy differed by a factor of about 100,000. The difficulty, of course,
was point 1 above. What is meant by the velocity of a Brownian par-
ticle? This is a question that will recur throughout these lectures. The
success of Einstein’s theory of Brownian motion (1905) was largely due
to his circumventing this question.
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Chapter 4

Albert Einstein

It is sad to realize that despite all of the hard work that had gone into
the study of Brownian motion, Einstein was unaware of the existence of
the phenomenon. He predicted it on theoretical grounds and formulated
a correct quantitative theory of it. (This was in 1905, the same year he
discovered the special theory of relativity and invented the photon.) As
he describes it [12, p. 47]:

“Not acquainted with the earlier investigations of Boltzmann and
Gibbs, which had appeared earlier and actually exhausted the subject,
I developed the statistical mechanics and the molecular-kinetic theory of
thermodynamics which was based on the former. My major aim in this
was to find facts which would guarantee as much as possible the exis-
tence of atoms of definite finite size. In the midst of this I discovered
that, according to atomistic theory, there would have to be a movement
of suspended microscopic particles open to observation, without know-
ing that observations concerning the Brownian motion were already long
familiar.”

By the time his first paper on the subject was written, he had heard
of Brownian motion [10, §3, p. 1]:

“It is possible that the movements to be discussed here are identical
with the so-called ‘Brownian molecular motion’; however, the information
available to me regarding the latter is so lacking in precision, that I can
form no judgment in the matter.”

There are two parts to Einstein’s argument. The first is mathematical
and will be discussed later (Chapter 5). The result is the following: Let
p = p(x,t) be the probability density that a Brownian particle is at x at
time ¢. Then, making certain probabilistic assumptions (some of them

13
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implicit), Einstein derived the diffusion equation

dp

— = DA 4.1
5 p (4.1)
where D is a positive constant, called the coefficient of diffusion. If the

particle is at 0 at time 0 (so that p(z,0) = §(x)) then

1 _lal?
p(z,t) = (AnD1) e bt (4.2)

(in three-dimensional space, where |x| is the Euclidean distance of x from
the origin).

The second part of the argument, which relates D to other physical
quantities, is physical. In essence, it runs as follows. Imagine a suspension
of many Brownian particles in a fluid, acted on by an external force K,
and in equilibrium. (The force K might be gravity, as in the figure, but
the beauty of the argument is that K is entirely virtual.)

Figure 1

In equilibrium, the force K is balanced by the osmotic pressure forces
of the suspension,

K — k7 829 (4.3)

v

Here v is the number of particles per unit volume, T is the absolute
temperature, and k is Boltzmann’s constant. Boltzmann’s constant has
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the dimensions of energy per degree, so that kT has the dimensions of
energy. A knowledge of k is equivalent to a knowledge of Avogadro’s
number, and hence of molecular sizes. The right hand side of (4.3) is
derived by applying to the Brownian particles the same considerations
that are applied to gas molecules in the kinetic theory.

The Brownian particles moving in the fluid experience a resistance
due to friction, and the force K imparts to each particle a velocity of the
form

K

mp’
where (3 is a constant with the dimensions of frequency (inverse time) and
m is the mass of the particle. Therefore

vK
mp3
particles pass a unit area per unit of time due to the action of the force K.

On the other hand, if diffusion alone were acting, v would satisfy the
diffusion equation

ov

% _ pA
ot v

so that
—Dgradv

particles pass a unit area per unit of time due to diffusion. In dynamical
equilibrium, therefore,

K
%E:ngu (4.4)

Now we can eliminate K and v between (4.3) and (4.4), giving Einstein’s
formula

kT
=
This formula applies even when there is no force and when there is only
one Brownian particle (so that v is not defined).

D (4.5)
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Parenthetically, if we divide both sides of (4.3) by mg, and use (4.5),
we obtain
K _D grad v
mp v

The probability density p is just the number density v divided by the
total number of particles, so this can be rewritten as
K grad p

— =D .
mp p

Since the left hand side is the velocity acquired by a particle due to the
action of the force,

grad p
p

D

(4.6)

is the velocity required of the particle to counteract osmotic effects.

If the Brownian particles are spheres of radius a, then Stokes’ theory
of friction gives m@3 = 6mna, where 7 is the coefficient of viscosity of the
fluid, so that in this case

kT

D = :
6mna

(4.7)

The temperature T and the coefficient of viscosity 1 can be measured,
with great labor a colloidal suspension of spherical particles of fairly uni-
form radius a can be prepared, and D can be determined by statistical
observations of Brownian motion using (4.2). In this way Boltzmann’s
constant k (or, equivalently, Avogadro’s number) can be determined. This
was done in a series of difficult and laborious experiments by Perrin and
Chaudesaigues [6, §3]. Rather surprisingly, considering the number of
assumptions that went into the argument, the result obtained for Avo-
gadro’s number agreed to within 19% of the modern value obtained by
other means. Notice how the points 3-6 of Chapter 3 are reflected in the
formula (4.7).

Einstein’s argument does not give a dynamical theory of Brownian
motion; it only determines the nature of the motion and the value of
the diffusion coefficient on the basis of some assumptions. Smoluchowski,
independently of Einstein, attempted a dynamical theory, and arrived
at (4.5) with a factor of 32/27 of the right hand side. Langevin gave
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another derivation of (4.5) which was the starting point for the work of
Ornstein and Uhlenbeck, which we shall discuss later (Chapters 9-10).
Langevin is the founder of the theory of stochastic differential equations
(which is the subject matter of these lectures).

Einstein’s work was of great importance in physics, for it showed in
a visible and concrete way that atoms are real. Quoting from Einstein’s
Autobiographical Notes again [12, p. 49]:

“The agreement of these considerations with experience together with
Planck’s determination of the true molecular size from the law of radiation
(for high temperatures) convinced the sceptics, who were quite numerous
at that time (Ostwald, Mach) of the reality of atoms. The antipathy of
these scholars towards atomic theory can indubitably be traced back to
their positivistic philosophical attitude. This is an interesting example
of the fact that even scholars of audacious spirit and fine instinct can be
obstructed in the interpretation of facts by philosophical prejudices.”

Let us not be too hasty in adducing any other interesting example
that may spring to mind.

Reference
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Philosophers, Inc., Evanston, Illinois, 1949.






Chapter 5

Derivation of the Wiener
process

Einstein’s basic assumption is that the following is possible [10, §3,
p. 13]: “We will introduce a time-interval 7 in our discussion, which is to
be very small compared with the observed interval of time [i.e., the inter-
val of time between observations], but, nevertheless, of such a magnitude
that the movements executed by a particle in two consecutive intervals
of time 7 are to be considered as mutually independent phenomena.”
He then implicitly considers the limiting case 7 — 0. This assumption
has been criticized by many people, including Einstein himself, and later
on (Chapter 9-10) we shall discuss a theory in which this assumption is
modified. Einstein’s derivation of the transition probabilities proceeds by
formal manipulations of power series. His neglect of higher order terms is
tantamount to the assumption (5.2) below. In the theorem below, p' may
be thought of as the probability distribution at time ¢ of the x-coordinate
of a Brownian particle starting at x = 0 at t = 0. The proof is taken from
a paper of Hunt [13], who showed that Fourier analysis is not the natural
tool for problems of this type.

THEOREM 5.1 Let p', 0 < t < oo, be a family of probability measures
on the real line R such that

pl o p® = pits; 0<t s < o0, (5.1)
where x denotes convolution; for each € > 0,

p'({z :|z] > e}) = o(t), t — 0; (5.2)

19
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and for each t > 0, p' is invariant under the transformation v — —x.
Then either pt = & for all t > 0 or there is a D > 0 such that, for all
t >0, p* has the density

1 2

e iDt

Var Dt ’

so that p satisfies the diffusion equation

op _ 0%
ot 0x2’

p(t,x) =

t > 0.

First we need a lemma:

THEOREM 5.2 Let 2~ be a real Banach space, f € Z°, 9 a dense linear
subspace of X, uy,... ,u, continuous linear functionals on 2, § > 0.
Then there exists a g € 9 with

If—gll<é
(U’hf) = (ulag)7 Tt ,(Umf) = (un,g)

Proof. Let us instead prove that if 2" is a real Banach space, Z a
dense convex subset, .# a closed affine hyperplane, then ¥ N .# is dense
in .. Then the general case of finite co-dimension follows by induction.

Without loss of generality, we can assume that .# is linear (0 € .Z),
so that, if we let e be an element of 2" not in .,

X = M & Re.
Let f € #, e > 0. Choose g, in Z so that
I(f +e) =g+l <e
and choose ¢g_ in Z so that
I(f—e)—g-[[ <e.
Set

g+ :m++r+€, my E%
g-=m_+r_e, m_€ ..
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Since .# is closed, the linear functional that assigns to each element of 2~
the corresponding coefficient of e is continuous. Therefore r, and r_ tend
to 1 as € — 0 and so are strictly positive for e sufficiently small. By the
convexity of &,

g= T-g+ +7+9-
r_ + Ty

is then in . But

r_my +ryim_
r_ + Ty

is also in ., and it converges to f as e — 0. QED.

We recall that if 2" is a Banach space, then a contraction semigroup
on £ (in our terminology) is a family of bounded linear transforma-
tions P! of 2 into itself, defined for 0 < t < oo, such that P° = 1,
P'Ps = Pt ||P'f — f|l — 0, and ||P']| <1, for all 0 < ¢, s < oo and
all fin 2. The infinitesimal generator A is defined by

t
Af = lim m
t—0t+ t
on the domain Z(A) of all f for which the limit exists.

If X is a locally compact Hausdorff space, C'(X) denotes the Banach

space of all continuous functions vanishing at infinity in the norm

171 = sup (@)l

and X denotes the one-point compactification of X. We denote by
C2 (RY) the set of all functions of class C? with compact support on R,

com

by C?(R") its completion in the norm

l l
of 0 f
LA = 0A0+ 2l + D sl
=1

i,j=1

./ N
and by C?*(R’) the completion of C% (R') together with the constants,
in the same norm.
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A Markovian semigroup on C'(X) is a contraction semigroup on C'(X)
such that f > 0 implies P*f > 0 for 0 < t < oo, and such that for all
in X and 0 <t < o0,

sup P'f(r) =1.
0<f<1
fec(Xx)

If X is compact, the last condition is equivalent to P!l =1, 0 <t < oo.
By the Riesz theorem, there is a unique regular Borel probability measure
p'(z,-) such that

Pif(e) = [ )8 dy),
and pt is called the kernel of Pt

-0
THEOREM 5.3 Let P' be a Markovian semigroup on C'(R") commuting
with translations, and let A be the infinitesimal generator of Pt. Then

CA(R") C 2(A).

. . . A .
Proof. Since P! commutes with translations, P! leaves C*(R’) invari-
ant and is a contraction semigroup on it. Let Af be the infinitesimal

generator of P! on C’Z(RE). Clearly 2(AT) C 2(A), and since the domain
of the infinitesimal generator is always dense, 2(A) N C2(R') is dense in
C2(R").

Let ¢ be in C’2(R£) and such that ¢(z) = |z|* in a neighborhood
of 0, ¥(z) = 1 in a neighborhood of infinity, and ¢ is strictly positive
on R — {0}. Apply Theorem 5.2 to 2" = C’2(R£), 2 =2(A)N CQ(RZ),
f =1, and to the continuous linear functionals mapping ¢ in 2" to

) 0%

Then, for all € > 0, there is a ¢ in Z(A4)N CZ(RZ) with

%o P 0y
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and ||¢ — 9| < e. If € is small enough, ¢ must be strictly positive on
R~ {0}. Fixsuch a ¢, and let 6 > 0, f € C’Q(RE). By Theorem 5.2 again
there is a g in Z(A)N C’2(Rg) with

[F(y) = 9(y) < dp(y)
for all y in R’. Now
+ [150) = 91 0.5 < § [ o) 0.0

and since p € Z(A) with ¢(0) = 0, the right hand side is O(J). Therefore

- [ - ro)p0.d) (53
and
+ [lats) = 50150,y (5.4

differ by O(0). Since g € Z(A), (5.4) has a limit as t — 0. Since 0 is
arbitrary, (5.3) has a limit as ¢ — 0. Therefore (5.3) is bounded as t — 0.

-l
Since this is true for each f in the Banach space C?(R"), by the principle

of uniform boundedness there is a constant K such that for all f in C’Q(Ré)
and t > 0,

HETEOIEP R

By translation invariance,

{77 = | < KA1

Now 1(P!'g — g) — Ag for all g in the dense set 2(A") N C’Q(RK), so by

t
the Banach-Steinhaus theorem, (P'f — f) converges in C (RZ) for all f

in C2(R"). QED.

THEOREM 5.4 Let P* be a Markovian semigroup on C’(RZ), not neces-
sarily commuting with translations, such that C2_(RY) C P(A), where A

com

is the infinitesimal generator of Pt. If for all x in R® and all € > 0

Py ly— =z = e}) = oft), (5.5)
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then

L 0?2
Z b 31‘1 ”2::1 @) 0x'0xl f(@) (5:6)

for all f in C?

2 (R, where the a” and b' are real and continuous, and
for each x the matriz a” (z) is of positive type.

A matrix a¥ is of positive type (positive definite, positive semi-definite,
non-negative definite, etc.) in case for all complex (,

¢
Z @aij(’j Z 0.

3,j=1

The operator A is not necessarily elliptic since the matrix a”(x) may be
singular. If P! commutes with translations then a” and b® are constants,
of course.

Proof. Let f € C2_(R") and suppose that f together with its first
and second order partial derivatives vanishes at . Let ¢ € C2_(R%) be
such that g(y) = |y —z|? in a neighborhood of z and g > 0. Let ¢ > 0 and
let U={y:|f(y)| <eg(y)}, so that U is a neighborhood of z. By (5.5),

p'(x, R*\ U) = o(t) and so

Af(z) = lim- /f "z, dy)

t—0 t

= lim— /f "z, dy) <€llm / p(z,dy) = Ag(x).

t—0 ¢

Since ¢ is arbitrary, Af(z) = 0. This implies that Af(z) is of the
form (5.6) for certain real numbers a(z), b*(x), and we can assume that
the @ (z) are symmetric. (There is no zero-order term since P' is Marko-
vian.) If we apply A to functions in C2 _(RY) that in a neighborhood of
x agree with y* — z* and (y* — 2%)(y? — 27), we see that b and a¥ are
continuous. If f is in C2_(R) and f(z) = 0 then

com

t—0 t

Af*(z) = lim - /f2 "z, dy) > 0.
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Therefore
¢
- 82f2
2 _ i
AP = 3 el
¢
NN
_ ij et
23 0 0) 50 )
We can choose
of ;
() = ¢

to be arbitrary real numbers, and since () is real and symmetric, a% (x)
is of positive type. QED.

THEOREM 5.5 Let P! be a Markovian semigroup on C(RE) commuting
with translations, and let A be its infinitesimal generator. Then

C*(R") € 2(4) (5.7)

and P* is determined by A on C2_ (R").

Proof. The inclusion (5.7) follows from Theorem 5.3. The proof of
that theorem shows that A is continuous from C2_(R’) into C(R"), so
that A on C2_(R") determines A on C%(R’) by continuity. Since P!
commutes with translations, P* leaves C?(R’) invariant.

Let A > 0. We shall show that (A — A)C?*(R") is dense in C(R").
Suppose not. Then there is a non-zero continuous linear functional z
on C(R’) such that (z,(A — A)f) = 0 for all f in C*(R"). Since C*(R")
is dense in C(R"), there is a g in C%(R") with (2, g) # 0. Then

(2. Py) = (2. AP'g) = (=, AP'g) = Az, P'g)

since Plg is again in C?(R"). Therefore

(2, P'g) = e¥(z,9)

is unbounded, which is a contradiction. It follows that if Q! is another

such semigroup with infinitesimal generator B, and B = A on C2_(R"),
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then (A — B)™ = (A — A)7! for A > 0. But these are the Laplace trans-
forms of the semigroups Q' and P!, and by the uniqueness theorem for
Laplace transforms, Q' = P*.  QED.

Theorem 5.1 follows from theorems 5.3, 5.4, 5.5 and the well-known
formula for the fundamental solution of the diffusion equation.
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Chapter 6

Gaussian processes

Gaussian random variables were discussed by Gauss in 1809 and the
central limit theorem was stated by Laplace in 1812. Laplace had already
considered Gaussian random variables around 1780, and for this reason
Frenchmen call Gaussian random variables “Laplacian”. However, the
Gaussian measure and an important special case of the central limit the-
orem were discovered by de Moivre in 1733. The main tool in de Moivre’s
work was Stirling’s formula, which, except for the fact that the constant
occurring in it is v/27, was discovered by de Moivre. In statistical me-
chanics the Gaussian distribution is called “Maxwellian”. Another name
for it is “normal”.

A Gaussian measure on R’ is a measure that is the transform of the
measure with density

1 _l‘x|2
(27)3/26 ’

under an affine transformation. It is called singular in case the affine
transformation is singular, which is the case if and only if it is singular
with respect to Lebesgue measure.

A set of random variables is called Gaussian in case the distribution
of each finite subset is Gaussian. A set of linear combinations, or limits in
measure of linear combinations, of Gaussian random variables is Gaussian.
Two (jointly) Gaussian random variables are independent if and only if
they are uncorrelated; i.e., their covariance

r(z,y) = E(z — Ex)(y — Ey)

is zero (where E denotes the expectation).

27
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We define the mean m and covariance r of a probability measure p
on R* as follows, provided the integrals exist:

m; = /a:iu(d:v)

Tij = /mixjﬂ(dﬂ?) —mym; = /(%‘ —m;)(x; —my)u(dz)

where x has the components x;. The covariance matrix r is of positive
type. Let u be a probability measure on R, /i its inverse Fourier transform

e) = / £ u(dz).

Then p is Gaussian if and only if

a(g) = e~ 3 2 Tiii iy miks

in which case r is the covariance and m the mean. If r is nonsingular and
r~! denotes the inverse matrix, then the Gaussian measure with mean m
and covariance r has the density

1 o=} SOV (@imma) (@;—my)
(2m)4/2(det r)2
If r is of positive type there is a unique Gaussian measure with covari-
ance r and mean m.
A set of complex random variables is called Gaussian if and only if the
real and imaginary parts are (jointly) Gaussian. We define the covariance
of complex random variables by

r(z,y) = E(z — Ez)(y — Ey)

Let T be a set. A complex function r on 7" x T is called of positive type
in case for all ¢1,... ,t, in T the matrix r(¢;,¢;) is of positive type. Let =
be a stochastic process indexed by T. We call r(t,s) = r(z(t), z(s)) the
covariance of the process, m(t) = Ex(t) the mean of the process (provided
the integrals exist). The covariance is of positive type.

The following theorem is immediate (given the basic existence theo-
rem for stochastic processes with prescribed finite joint distributions).

THEOREM 6.1 Let T' be a set, m a function on T, r a function of
positive type onT'XT. Then there is a Gaussian stochastic process indezxed
by T with mean m and covariance r. Any two such are equivalent.
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Chapter 7

The Wiener integral

The differences of the Wiener process
w(t) —w(s), 0<s<t<oo

form a Gaussian stochastic process, indexed by pairs of positive numbers
s and t with s < t. This difference process has mean 0 and covariance

E(w(t) — w(s)) (w(t') - w(s')) =% |[s,t] N [s, 1]

where | | denotes Lebesgue measure, and o2 is the variance parameter of
the Wiener process.

We can extend the difference process to all pairs of real numbers s
and t. We can arbitrarily assign a distribution to w(0). The resulting
stochastic process w(t), —oo < t < o0, is called the two-sided Wiener
process. It is Gaussian if and only if w(0) is Gaussian (e.g., w(0) = zq
where zg is a fixed point), but in any case the differences are Gaussian.
If we know that a Brownian particle is at xy at the present moment,
w(0) = xg, then w(t) for ¢ > 0 is the position of the particle at time ¢ in
the future and w(t) for ¢ < 0 is the position of the particle at time ¢ in
the past. A movie of Brownian motion looks, statistically, the same if it
is run backwards.

We recall that, with probability one, the sample paths of the Wiener
process are continuous but not differentiable. Nevertheless, integrals of
the form

/ Z 7(t) du(t)

can be defined, for any square-integrable f.

31
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THEOREM 7.1 Let Q2 be the probability space of the differences of the

two-sided Wiener process. There is a unique isometric operator from
L3(R, o%dt) into L*(RY), denoted by

fH/%ﬂﬂMﬁ%

such that for all —oo < a < b < o0,

/WMM@mmwzw@—wwy

The set of [°° f(t)dw(t) is Gaussian.

If F is any set, xg is its characteristic function,

oo [1oter
X =0, teE

We shall write, in the future, [” f(t) dw(t) for [ yiap(t)f(t) dw(t).

Proof. Let f be a step function

[ = Z CiXlai,bs]-
i=1

Then we define

/_OO f(t) dw(t) = cilw(b;) —w(a;)]. (7.1)

i=1

If g also is a step function,

g= Z de[ej,fj]a
j=1
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then

B[ s [ o) duls)

= B alwb) - wla) Y difw(f;) - w(e)
- Z Z cidio® |[[w(b;) — w(a;)] N [w(f;) —w(e;)]]

_ / " Fg( dr.

Since the step functions are dense in L?(R, o%dt), the mapping extends
by continuity to an isometry. Uniqueness is clear, and so is the fact that
the random variables are Gaussian. QED.

The Wiener integral can be generalized. Let T, p be an arbitrary
measure space, and let .7, denote the family of measurable sets of finite
measure. Let w be the Gaussian stochastic process indexed by .7, with
mean 0 and covariance r(E, F) = u(E N F). This is easily seen to be of
positive type (see below). Let € be the probability space of the w-process.

THEOREM 7.2 There is a unique isometric mapping
Fro [ #teyau
from L*(T, u) into L*(Q) such that, for E € A,
[ ety dute) = w(E).
The [ f(t)dw(t) are Gaussian.

The proof is as before.
If 77 is a Hilbert space, the function r on S x ¢ that is the inner
product, 7(f,g) = (f,g), is of positive type, since

S OGUL G =D GHIP = 0.
i
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Consequently, the Wiener integral can be generalized further, as a purely
Hilbert space theoretic construct.

THEOREM 7.3 Let ¢ be a Hilbert space. Then there is a Gaussian
stochastic process, unique up to equivalence, with mean O and covariance
given by the inner product.

Proof. This follows from Theorem 6.1. QED.

The special feature of the Wiener integral on the real line that makes
it useful is its relation to differentiation.

THEOREM 7.4 Let f be of bounded variation on the real line with com-
pact support, and let w be a Wiener process. Then

| 0wt = - [~ areu), (7.2

In particular, if f is absolutely continuous on [a,b], then

/ f(t) dw(t) = —/ fOw(t)dt + f(b)w(b) — f(a)w(a).

The left hand side of (7.2) is defined since f must be in L?. The right
hand side is defined a.e. (with probability one, that is) since almost ev-
ery sample function of the Wiener process is continuous. The equality in
(7.2) means equality a.e., of course.

Proof. If f is a step function, (7.2) is the definition (7.1) of the Wiener
integral. In the general case we can let f,, be a sequence of step functions
such that f, — fin L? and df, — df in the weak-* topology of measures,
so that we have convergence to the two sides of (7.2). QED.
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Chapter 8

A class of stochastic
differential equations

By a Wiener process on R’ we mean a Markov process w whose in-
finitesimal generator C' is of the form

¢
0P

= E Z 1

¢ M (8.1)

4,j=1

where ¢ is a constant real matrix of positive type. Thus the w(t) —w(s)
are Gaussian, and independent for disjoint intervals, with mean 0 and
covariance matrix 2¢¥|t — s|.

THEOREM 8.1 Let b : R — R satisfy a global Lipschitz condition; that
is, for some constant K,

|b(wo) — b(21)| < Kl|zo — 1]

for all zo and x1 in R, Let w be a Wiener process on R® with infinitesimal
generator C' given by (8.1). For each xq in R’ there is a unique stochastic
process x(t), 0 <t < 0o, such that for all t

x(t) = xo + /0 b(z(s)) ds + w(t) — w(0). (8.2)

The x process has continuous sample paths with probability one.
If we define Pf(xo) for 0 <t < oo, 29 € RY, f € C(RY) by

P f(zo) = Ef (z(t)), (8.3)

37
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where E denotes the expectation on the probability space of the w process,
then P! is a Markovian semigroup on C(Re). Let A be the infinitesimal
generator of P'. Then C2,_(R") C 2(A) and

Af=b-Vf+Cf (8.4)
for all f in C2 (RY).

Proof. With probability one, the sample paths of the w process are
continuous, so we need only prove existence and uniqueness for (8.2) with
w a fixed continuous function of . This is a classical result, even when w is
not differentiable, and can be proved by the Picard method, as follows.

Let A > k, t > 0, and let 2" be the Banach space of all continuous
functions ¢ from [0, ] to R® with the norm

€l = sup e7*[&(s)].
Define the non-linear mapping 7' : 2~ — %2 by
TE(s) =£(0) + /0 b(&(r)) dr + w(s) — w(0).

Then we have

T =Tl < 160) 00|+ sup | [ pe(r)) = bGat)] dr

< 1€(0) —n(0)] + sup ek Os|s<r>—n<r>|dr

0<s<t

< 1€60) = n(0)] + sup e [~ dr
0

<s<t

= [£(0) = n(0)[ + allg = nll (8.5)

where a = k/\ < 1. For 2y in RY, let 2, = {€ € 2" : £(0) = z}. Then
2., is a complete metric space and by (8.5), T" is a proper contraction
on it. Therefore 7" has a unique fixed point = in 2. Since ¢ is arbitrary,
there is a unique continuous function z from [0, c0) to R’ satisfying (8.2).
Any solution of (8.2) is continuous, so there is a unique solution of (8.2).

Next we shall show that P! : C(RY) — C(R"). By (8.5) and induction
on n,

[T =Tyl <1+ a+...+a"][E0) —n(0)] +a™[[€ —n. (8.6)
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If 20 is in RY, we shall also let x5 denote the constant map zo(s) = o,
and we shall let = be the fixed point of T" with z(0) = x, so that

r = lim T"x,
and similarly for yo in RY. By (8.6), ||z — y| < Blzo — yol|, where g =
1/(1 — ). Therefore, |z(t) — y(t)| < eMBlxg — yo|. Now let f be any
Lipschitz function on RY with Lipschitz constant K. Then

|f(=(1) — f(y(1)| < KeMBlzo — yol-

Since this is true for each fixed w path, the estimate remains true when
we take expectations, so that

|P'f(x0) — P'f (y0)| < KeMBlzo — ol

Therefore, if f is a Lipschitz function in C(R") then P'f is a bounded
continuous function. The Lipschitz functions are dense in C(R") and P*
is a bounded linear operator. Consequently, if f is in C'(R*) then P!f is
a bounded continuous function. We still need to show that it vanishes at
infinity. By uniqueness,

for all 0 < s <, so that

[ b(e0)) b(o)ar

|z(t) —2(s)] <

(t = 5) [o(=(®))]

+lw(t) —w(s)|
< / 2(r) — (8)] dr + t[b(2())| + lw(t) — w(s)
< moililztu( r) —x(t)] +t|b(z(t))] —i—OS<uEt|w( ) —w(r)].

Since this is true for each s, 0 < s <'t,

sup [z(t) = a(s)] < 7[¢ [b(z(0))] + sup Juw(t) —w(s)l],

where v = 1/(1 — kt), provided that xkt < 1. In particular, if Kt < 1 then

o(0) = ol < 5[t ]p(e(®) |+ sup fult) —w(s)].  (E7)
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Now let f be in Ceom(RY), let k¢ < 1, and let § be the supremum of [b(z)]
for zo in the support of f. By (8.7), f(z(t)) = 0 unless

inf |20 —xo| < y[td+ sup |w(t) —w(s)|]. (8.8)

zo€supp f 0<s<t

But as ¢ tends to infinity, the probability that w will satisfy (8.8) tends
to 0. Since f is bounded, this means that Ef (z(t)) = P*f(z0) tends to 0
as xo tends to infinity. We have already seen that P!f is continuous, so
P!f is in C(RY). Since Ceom(R?) is dense in C'(R) and P! is a bounded
linear operator, P! maps C(R") into itself, provided xt < 1. This restric-
tion could have been avoided by introducing an exponential factor, but
this is not necessary, as we shall show that the P! form a semigroup.

Let 0 < s < t. The conditional distribution of z(¢), with z(r) for all
0 <r < s given, is a function of z(s) alone, since the equation

z(t) = x(s) + /t b(z(s)) ds" +w(t) — w(s),
has a unique solution. Thus the x process is a Markov process, and
E{f(z(®)) [2(r),0 <7 < s} = B{f (2(t)) |(s)} = P""*f (x(s))
for f in C(R"), 0 < s < t. Therefore,

P f(x0) = Bf (ot + 5))
= BB{/((t +5)) [ 2(r).0 < r < 5)

=EP'f(x(s))
= P*P' f(),

so that P! = P!P*. Tt is clear that

sup P'f(zo) = 1

0<f<1

for all xy and t.
It remains only to prove (8.4) for f in C2,_(RY). (Since C2 (R") is

dense in C(R) and the P! have norm one, this will imply that P'f — f
ast — 0 for all f in C(RY), so that P* is a Markovian semigroup.)
Let f bein C2 (R"), and let K be a compact set containing the sup-

port of f in its interior. An argument entirely analogous to the derivation
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of (8.7), with the subtraction and addition of b(z) instead of b(z(t)),
gives

|2(t) — wo| < ~[E]b(x0)| + sup |w(0) —w(s)[], (8.9)

0<s<t

provided st < 1 (which we shall assume to be the case). Let xy be
in the complement of K. Then f(zo) = 0 and f(z(t)) is also 0 unless
e < |z(t) — xo|, where ¢ is the distance from the support of f to the
complement of K. But the probability that the right hand side of (8.9)
will be bigger than ¢ is o(t) (in fact, o(¢") for all n) by familiar properties
of the Wiener process. Since f is bounded, this means that P'f(z) is
uniformly o(t) for xy in the complement of K, so that

P' f(x0) — f(wo)
t

— b(x0) - V f(20) + Cf(20) =0
uniformly for xy in the complement of K. Now let 2y be in K. We have
t
P'f(zo) =Ef(z(t)) = Ef (xo + / b(z(s)) ds +w(t) — w(O)) .
0

Define R(t) by

f (wo + /0 b(z(s)) ds + w(t) — w(O))
= [(w0) + tb(xo) - V f(w0) + [w(t) = w(0)] - V f (o)

2

+ % ;[wi(t) = w'(0)][w (t) — w’(0)] ag;(?axﬂ' flw) + R(E).

Then

P'f(x0) — f(0)
t

By Taylor’s formula,

= (o) -V f(z0) + Cf (o) + SER(1).

R(t) = offu(t) — w(0)*) + 0 ( / [b(a(s)) — bao)] ds) -

Since E(Jw(t) — w(0)|*) < const. ¢, we need only show that

B sup - /0 b(a(s)) — blo)|ds (8.10)

roEK
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tends to 0. But (8.10) is less than

1 t
E sup —/4:/ |z(s) — xolds,
0

zo€EK t

which by (8.9) is less than
E sup ky[t|b(zo)| + sup |w(0) — w(s)|]. (8.11)

roeEK 0<s<t

The integrand in (8.11) is integrable and decreases to 0 ast — 0. QED.

Theorem 8.1 can be generalized in various ways. The first paragraph
of the theorem remains true if b is a continuous function of x and ¢ that
satisfies a global Lipschitz condition in z with a uniform Lipschitz con-
stant for each compact t-interval. The second paragraph needs to be
slightly modified as we no longer have a semigroup, but the proofs are
the same. Doob [15, §6, pp. 273-291], using K. Itd’s stochastic integrals
(see Chapter 11), has a much deeper generalization in which the matrix
¢ depends on x and t. The restriction that b satisfy a global Lipschitz
condition is necessary in general. For example, if the matrix ¢ is 0 then
we have a system of ordinary differential equations. However, if C is el-
liptic (that is, if the matrix ¢ is of positive type and non-singular) the
smoothness conditions on b can be greatly relaxed (cf. [20]).

We make the convention that

dz(t) = b(z(t))dt + dw(t)

means that

for all ¢ and s.

THEOREM 8.2 Let A : R — RY be linear, let w be a Wiener process
on R® with infinitesimal generator (8.1), and let f : [0,00) — R’ be
continuous. Then the solution of

dx(t) = Az (t)dt + f(t)dt + dw(t), x(0) = xo, (8.12)

fort >0 1is

t t
z(t) = eMxy + / A9 f(s) ds + / A du(s). (8.13)
0 0
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The xz(t) are Gaussian with mean
Ex(t) = ez + /t eAt=9) £ () ds (8.14)
0
and covariance r(t,s) = E(z(t) — Ex(t)) (z(s) — Ex(s)) given by

A(t—s) S Ar2 ATrd t>
r(ts) =9 A fofT CeA f’ =7 (8.15)
Jy e 2ce? TdrettsTh |t <

The latter integral in (8.13) is a Wiener integral (as in Chapter 7). In
(8.15), AT denotes the transpose of A and c is the matrix with entries ¢
occurring in (8.1).

Proof. Define z(t) by (8.13). Integrate the last term in (8.13) by parts,
obtaining

t t
/ A dw(s) = / Ay (s) ds + eA(t_s)w(s)E:g
0 0
t
= / AeM=)y(s) ds + w(t) — eMw(0).
0

It follows that x(¢) —w(t) is differentiable, and has derivative Az (t)+ f(t).
This proves that (8.12) holds.

The z(t) are clearly Gaussian with the mean (8.14). Suppose that
t > s. Then the covariance is given by

Ex;(t)z;(s) — Ex;(t)Ex;(s)

— E/ Z (eA(t_tl))ik d’wk(tl) /OSZ (eA(s—sl))jh dwh(sl)

h

- /Z A=) 90y, (A7) dr

0 kh

— / <€At r 2C€A (s— 7")> dr
0 ij

= ( ATQCeATTdT) .

ij

The case t < s is analogous. QED.
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Chapter 9

The Ornstein-Uhlenbeck
theory of Brownian motion

The theory of Brownian motion developed by Einstein and Smolu-
chowski, although in agreement with experiment, was clearly a highly
idealized treatment. The theory was far removed from the Newtonian
mechanics of particles. Langevin initiated a train of thought that, in
1930, culminated in a new theory of Brownian motion by L. S. Ornstein
and G. E. Uhlenbeck [22]. For ordinary Brownian motion (e.g., carmine
particles in water) the predictions of the Ornstein-Uhlenbeck theory are
numerically indistinguishable from those of the Einstein-Smoluchowski
theory. However, the Ornstein-Uhlenbeck theory is a truly dynamical
theory and represents great progress in the understanding of Brownian
motion. Also, as we shall see later (Chapter 10), there is a Brownian
motion where the Einstein-Smoluchowski theory breaks down completely
and the Ornstein-Uhlenbeck theory is successful.

The program of reducing Brownian motion to Newtonian particle me-
chanics is still incomplete. The problem, or one formulation of it, is to
deduce each of the following theories from the one below it:

Einstein - Smoluchowski
Ornstein - Uhlenbeck
Maxwell - Boltzmann
Hamilton - Jacobi.

We shall consider the first of these reductions in detail later (Chapter 10).
Now we shall describe the Ornstein-Uhlenbeck theory for a free particle
and compare it with Einstein’s theory.

45
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We let z(t) denote the position of a Brownian particle at time ¢ and
assume that the velocity dz/dt = v exists and satisfies the Langevin
equation

dv(t) = —po(t)dt + dB(t). (9.1)

Here B is a Wiener process (with variance parameter to be determined
later) and (3 is a constant with the dimensions of frequency (inverse time).
Let m be the mass of the particle, so that we can write
d*x dB

This is merely formal since B is not differentiable. Thus (using Newton’s
law F' = ma) we are considering the force on a free Brownian particle
as made up of two parts, a frictional force Fy, = —m/fv with friction
coefficient m@ and a fluctuating force Fy = mdB/dt which is (formally)
a Gaussian stationary process with correlation function of the form a
constant times d, where the constant will be determined later.

If v(0) = vy and x(0) = x¢, the solution of the initial value problem
is, by Theorem 8.2,

v(t) = e Pl + e /t e’ dB(s),
e (92)
z(t) = xo —l—/o v(s)ds.

For a free particle there is no loss of generality in considering only the
case of one-dimensional motion. Let o2 be the variance parameter of B
(infinitesimal generator 302d?/dv?, EdB(t)* = o2dt). The velocity v(t) is
Gaussian with mean

e_ﬁtvo,

by (9.2). To compute the covariance, let ¢t > s. Then

t s
E(eﬁt/ eﬁtldB(tl)eﬁs/ eﬂsldB(sl)>
0 0

S
_ e—ﬁ(t+s)/ 62ﬁr02d7“
0

_ 6—6(t+s)0262&7_1
26
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For t = s this is

0.2

208
Thus, no matter what vy is, the limiting distribution of v(t) as t — oo is
Gaussian with mean 0 and variance 02/23. Now the law of equipartition

of energy in statistical mechanics says that the mean energy of the particle
(in equilibrium) per degree of freedom should be %k’T. Therefore we set

(1 — e 20,

1 21
“mZ = kT
2793~ 2

That is, recalling the previous notation D = kT'/m/(3, we adopt the nota-
tion
kT
o2 — oM 26°D
m

for the variance parameter of B.
We summarize in the following theorem.

THEOREM 9.1 Let D and [ be strictly positive constants and let B be
the Wiener process on R with variance parameter 23°D. The solution of

dv(t) = —pu(t)dt + dB(t); v(0) = vy
fort >0 is
t
v(t) = e Pl +/ e_ﬁ(t_s)dB(s).
0
The random variables v(t) are Gaussian with mean
m(t) = e Py
and covariance
r(t,s) = D (e_mt_‘g' — e‘ﬁ(t“)) .

The v(t) are the random wvariables of the Markov process on R with in-
finitesimal generator

d o
A D2
&jdv +6 dv?
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with domain including C%_ (R), with initial measure 0,,. The kernel of

com

the corresponding semigroup operator P! is given by

(v — e Plygy)?

pt(UO: dv) = [QWﬂD(l — e*2ﬂt>]*% exp _ZﬁD(l — €—2Bt)

dv.

The Gaussian measure i with mean 0 and variance BD is invariant,
P = p, and p is the limiting distribution of v(t) as t — oo.

The process v is called the Ornstein-Uhlenbeck velocity process with
diffusion coefficient D and relaxation time 87!, and the corresponding po-

sition process = (given by (9.2)) is called the Ornstein-Uhlenbeck process.

THEOREM 9.2 Let the v(t) be as in Theorem 9.1, and let

(t) = 20 + /Otv(s) ds.

Then the z(t) are Gaussian with mean

1—e Bt

rh(t) = X9+ ﬂ

Vo

and covariance

D
7(t,s) = 2D min(t, s) + E (—2 4+ 2e Pt 4 275 — o Blt=sl _ e’ﬁ(t“)) )

Proof. This follows from Theorem 9.1 by integration,
t
m(t) = zo —I—/ m(s)ds,
0

t s
f(t,S)Z/D dtl/o dSlT(tl,Sl).

The second integration is tedious but straightforward. QED.

In particular, the variance of z(t) is

D
2Dt + 5(_3 + 4e7Pt — e720t).
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The variance in Einstein’s theory is 2Dt. By elementary calculus, the
absolute value of the difference of the two variances is less than 3D37!.
In the typical case of 57! = 107®sec ., t = £ sec., we make a proportional
error of less than 3 x 1078 by adopting Einstein’s value for the variance.
The following theorem shows that the Einstein theory is a good approxi-
mation to the Ornstein-Uhlenbeck theory for a free particle.

THEOREM 9.3 Let 0 =ty <t < ... <t,, and let

At = min tz - tifl.
1<i<n

Let f(xy,...,x,) be the probability density function for x(t1),...,z(t,),
where x is the Ornstein-Uhlenbeck process with x(0) = xo, v(0) = v,
diffusion coefficient D and relaxation time 3. Let g(xy,... ,x,) be the
probability density function for w(ty),... ,w(t,), where w is the Wiener
process with w(0) = xy and diffusion coefficient D.

Lete > 0. There exist Ny depending only on € andn and Ny depending
only on € such that if

At > N g1, (9.3)
v
> No——— 4
t1 > 22D527 (9 )
then
/R" |f(z1,. .oy xn) — gz, ..o xy)|day . day, < e (9.5)

Proof. Assume, as one may without loss of generality, that zy = 0.
Consider the non-singular linear transformation

(X1, @) = (1, ..., Tp)

on R" given by

(NI

fori = 1,...,n. The random variables w(t;) obtained when this trans-
formation is applied to the w(¢;) are orthonormal since Ew(t;)w(t;) =
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2D min(t;,t;). Thus g, the probability density function of the w(t;), is
the unit Gaussian function on R™. Let f be the probability density func-
tion of the Z(¢;), where the Z(t;) are obtained by applying the linear
transformation (9.6) to the x(¢;). The left hand side of (9.5) is unchanged
when we replace f by f and ¢ by §, since the total variation norm of a
measure is unchanged under a one-to-one measurability-preserving map
such as (9.6).

We use the notation Cov for the covariance of two random variables,
Cov xy = Exy — ExEy. By Theorem 9.2 and the remark following it,

Cov z(t;)x(t;) = Covw(t;)w(t;) + €y,
where |e;;] <3D3™'. By (9.6),
Cov i’(tz)i’(t]) = 5ij + 5%,

where |¢};| < 4-3D3"/2DAt < 6/N, if (9.3) holds. Again by Theorem
9.2, the mean of Z(¢;) is, in absolute value, smaller than

_1
vl /B12D1]7 < N, ®

if (9.4) holds. The mean of Z(¢;) for i > 1 is, in absolute value, smaller
than

(et — =) |ug| /B[2D(t; — t;1)]2.

Since the first factor is smaller than 1, the square of this is smaller than

e Bti-1 _ o—Bti Ug &e—ﬂtl - N1€*N1
ti—tic1  2DB% T N, AL

if (9.3) and (9.4) hold with N; > 1. Therefore, if we choose N; and N,
large enough, the mean and covariance of f are arbitrarily close to 0 and
95, respectively, which concludes the proof. QED.

Chandrasekhar omits the condition (9.4) in his discussion [21, equa-
tions (171) through (174)], but his reasoning is circular. Clearly, if
vp is enormous then ¢; must be suitable large before the Wiener pro-
cess is a good approximation. The condition (9.3) is usually written
At > 471 (At much larger than 871). If vy is a typical velocity—i.e., if
lvg| is not much larger than the standard deviation (kT/m)2 = (Dg)z
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of the Maxwellian velocity distribution—then the condition (9.4), t; >
v2/2D3?, is no additional restriction if At > 571

There is another, and quite weak, formulation of the fact that the
Wiener process is a good approximation to the Ornstein-Uhlenbeck pro-
cess for a free particle in the limit of very large 3 (very short relaxation
time) but D of reasonable size.

DEFINITION. Let z,, x be real stochastic processes indexed by the same
index set T' but not necessarily defined on a common probability space.
We say that z, converges to x in distribution in case for each t{,... ,t, in
T, the distribution of (1), ... , z4(t,) converges (in the weak-* topology
of measures on R", as a ranges over a directed set) to the distribution of
x(t1), ..., x(ty).

It is easy to see that if we represent all of the processes in the usual
way [25] on Q = RI, this is the same as saying that Pr, converges to Pr
in the weak-* topology of regular Borel measures on €2, where Pr, is the
regular Borel measure associated with z, and Pr.

The following two theorems are trivial.

THEOREM 9.4 Let x,, x be Gaussian stochastic processes with means
Mg, M and covariances T, 7. Then x, converges to x in distribution if
and only if ro, — 1 and my, — m pointwise (on T and T x T respectively,
where T is the common index set of the processes).

THEOREM 9.5 Let 3 and o? wvary in such a way that 3 — oo and
D = 0%/23? remains constant. Then for all vy the Ornstein-Uhlenbeck
process with initial conditions x(0) = xo, v(0) = vy, diffusion coefficient
D, and relazation time 371 converges in distribution to the Wiener pro-
cess starting at xog with diffusion coefficient D.
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