Integration by substitution

The best general advice is this: substitute for the troublesome part of the integral but don't be too greedy. For example, in $\int \frac{e^{\sqrt{t}} d t}{\sqrt{t}}$, the $e^{\sqrt{t}}$ is troublesome, but you should substitute just for the \sqrt{t}; let $y=\sqrt{t}$.

There is a natural tendency immediately to differentiate after a substitution is made, but this is not always wise. In the example above, we can get away with this: $\frac{d \sqrt{t}}{d t}=\frac{1}{2 \sqrt{t}}$ and we were lucky, since $\frac{1}{\sqrt{t}}$ occurs in the integral. But a safer procedure is to express the old variable in terms of the new and then differentiate. In our example, $y=\sqrt{t}$ so $t=y^{2}$ and $d t=2 y d y$.

Similarly, in $\int \frac{d x}{x-\sqrt{x}}$ the troublesome part is \sqrt{x}. Let $y=\sqrt{x}$, so $x=y^{2}$ and $d x=2 y d y$.

Trigonometric functions and cofuntions

The following pairs of trigonometric functions are called cofunctions of each other, because each function in a pair is the other function of the complementary angle:

$$
\begin{aligned}
\sin \theta=\cos (\pi / 2-\theta) & \cos \theta=\sin (\pi / 2-\theta) \\
\tan \theta=\cot (\pi / 2-\theta) & \cot \theta=\tan (\pi / 2-\theta) \\
\sec \theta=\csc (\pi / 2-\theta) & \csc \theta=\sec (\pi / 2-\theta)
\end{aligned}
$$

Notice that $d(\pi / 2-\theta)=-d \theta$. This has the following consequence:
In any integration or differentiation formula involving trigonometric functions of θ alone, we can replace all trigonometric functions by their cofunctions and change the overall sign.

The use of this rule cut memorization in half.
For example, $\int \cot \theta d \theta=\int \frac{\cos \theta d \theta}{\sin \theta}=\ln |\sin \theta|+C$, so $\int \tan \theta d \theta=-\ln |\cos \theta|+C$.
If we remember that $\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$, then we automatically have $\int \csc \theta d \theta=-\ln |\csc \theta+\cot \theta|+C$.

And if we remember that $d \sec \theta=\sec \theta \tan \theta d \theta$, then we know that $d \csc \theta=$ $-\csc \theta \cot \theta d \theta$.

