Mathematics 104

Spring Term 2004
Final Examination
May 12, 2004

1. Evaluate $\int\left(\theta^{2}+1\right) \cos \theta d \theta$.
2. Evaluate $\int \frac{4 x e^{x^{2}}}{e^{2 x^{2}}+2 e^{x^{2}}+2} d x$.
3. Evaluate $\int \frac{\sqrt{x^{2}-1}}{x^{2}} d x$. Hint: you may at some point want to use $\sin ^{2} \theta=1-\cos ^{2} \theta$.
4. Does $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ converge or diverge? Give your reasons.
5. For each of the following three series, state whether it converges or diverges and give your reasons.
a) $\sum_{n=0}^{\infty} \frac{7^{n}-2^{n}}{(2 n)!}$.
b) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+\sqrt{n}}$.
c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{2^{n}+n^{2}}$.
6. For what values of x does each of the following two series converge? Give your reasons.
a) $\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{\sqrt{n^{3}}}$.
b) $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{n}$.
7. Find the second order Taylor polynomial of $\tan ^{-1} x$ about the center $a=\frac{1}{2}$.
8. Find $\sqrt[3]{1.01}$ with an error at most 0.0001. Hint: $\sqrt[3]{1.01}=(1+0.01)^{1 / 3}$.
9.

a) Draw the graph of the first two turns of the spiral given in polar coordinates by $r=2 \theta$ (that is, for $0 \leq \theta \leq 4 \pi$).
b) Find the area of the region enclosed between the first and second turn of the spiral (i.e., the region between the curves $r=2 \theta$ for $0 \leq \theta \leq 2 \pi$ and $r=2 \theta$ for $2 \pi \leq \theta \leq 4 \pi$, as well as the positive x-axis between 0 and 4π).
10. Find all real or complex solutions to $z^{8}-z^{4}-2=0$.
11. The region inside the curve

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

and above the x-axis is revolved about the x-axis. Find the volume.
12. Solve the initial value problem

$$
x \frac{d y}{d x}-2 y=x^{3} e^{x}, \quad y(1)=0
$$

