SERIES

We say that the series $\sum_{n=0}^{\infty} a_n$ converges to L, or $\sum_{n=0}^{\infty} a_n = L$, in case the limit of the sequence of partial sums $\sum_{n=0}^{N} a_n$ is L; i.e., $\lim_{N\to\infty} \sum_{n=0}^{N} = L$. The series $\sum_{n=0}^{\infty} a_n$ converges in case to converges to some number L; otherwise, it diverges.

From the definition, we find that the **geometric series** $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ if |r| < 1 and diverges if $|r| \ge 1$. It follows that $\sum_{n=k}^{\infty} r^n = \frac{r^k}{1-r}$ if |r| < 1 by factoring out the common factor r^k .

Tests for series with positive terms

comparison If $0 \le a_n \le b_n$ and the big series $\sum_{n=0}^{\infty} b_n$ converges, then the small series $\sum_{n=0}^{\infty} a_n$ converges. (But if the big series diverges, this gives no information about the small series.)

limit comparison (very useful) If $0 < a_n$, $0 < b_n$, and $a_n \sim b_n$ as $n \to \infty$ (that is, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$), then the two series both converge or both diverge. Read \sim as "is asymptotic to", or "behaves like". A polynomial in n behaves like the leading term as $n \to \infty$.

integral test If f is continuous, positive, and decreasing on $[1, \infty)$, then the integral $\int_{1}^{\infty} f(x) dx$ and the series $\sum_{n=1}^{\infty} f(n)$ both converge or both diverge. This is seldom used except for the following special case:

p-test
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $p \le 1$.

root and ratio tests If $a_n > 0$ and $\lim_{n \to \infty} a_n^{1/n} = \rho$, then the series converges if $\rho < 1$ and diverges if $\rho > 1$. If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$, then the series converges if $\rho < 1$ and diverges if $\rho > 1$. In both cases, there is no information if $\rho = 1$.

Tests for series that may have both negative and positive terms

n'th term test for divergence If the sequence a_n does not tend to 0 as $n \to \infty$ (i.e., if $\lim_{n \to \infty} l$ and $l \neq 0$, or if the limit does not exist), then the series $\sum_{n=0}^{\infty} a_n$ diverges. (But if $\lim_{n \to \infty} a_n = 0$, this gives no information.)

absolute convergence If $\sum_{n=0}^{\infty} |a_n|$ converges, then $\sum_{n=0}^{\infty} a_n$ converges. (But if $\sum_{n=0}^{\infty} |a_n|$ diverges, this gives no information.)

alternating series test If the sequence a_n decreases to 0 (that is, if $a_0 > a_1 > a_2 > \cdots$ and $\lim_{n \to \infty} a_n = 0$), then the series $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

Tips

First make an informed guess as to whether the series converges or diverges. Is a_{100} very small? Try the n'th term test for divergence.

Use limit comparison to find a simpler series you are familiar with where the terms behave like the terms of the given series.

If you see a factorial (!), use the ratio test.

If you see c^n (where c is a constant), try the root or ratio test. If you just see n^c , try the p-test.