SERIES

We say that the series $\sum_{n=0}^{\infty} a_{n}$ converges to L, or $\sum_{n=0}^{\infty} a_{n}=L$, in case the limit of the sequence of partial sums $\sum_{n=0}^{N} a_{n}$ is L; i.e., $\lim _{N \rightarrow \infty} \sum_{n=0}^{N}=L$. The series $\sum_{n=0}^{\infty} a_{n}$ converges in case to converges to some number L; otherwise, it diverges.

From the definition, we find that the geometric series $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$ if $|r|<1$ and diverges if $|r| \geq 1$. It follows that $\sum_{n=k}^{\infty} r^{n}=\frac{r^{k}}{1-r}$ if $|r|<1$ by factoring out the common factor r^{k}.

Tests for series with positive terms

comparison If $0 \leq a_{n} \leq b_{n}$ and the big series $\sum_{n=0}^{\infty} b_{n}$ converges, then the small series $\sum_{n=0}^{\infty} a_{n}$ converges. (But if the big series diverges, this gives no information about the small series.)
limit comparison (very useful) If $0<a_{n}, 0<b_{n}$, and $a_{n} \sim b_{n}$ as $n \rightarrow \infty$ (that is, $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$), then the two series both converge or both diverge. Read \sim as "is asymptotic to", or "behaves like". A polynomial in n behaves like the leading term as $n \rightarrow \infty$.
integral test If f is continuous, positive, and decreasing on $[1, \infty)$, then the integral $\int_{1}^{\infty} f(x) d x$ and the series $\sum_{n=1}^{\infty} f(n)$ both converge or both diverge. This is seldom used except for the following special case:
p-test $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
root and ratio tests If $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\rho$, then the series converges if $\rho<1$ and diverges if $\rho>1$. If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$, then the series converges if $\rho<1$ and diverges if $\rho>1$. In both cases, there is no information if $\rho=1$.

Tests for series that may have both negative and positive terms

n'th term test for divergence If the sequence a_{n} does not tend to 0 as $n \rightarrow \infty$ (i.e., if $\lim _{n \rightarrow \infty}=l$ and $l \neq 0$, or if the limit does not exist), then the series $\sum_{n=0}^{\infty} a_{n}$ diverges. (But if $\lim _{n \rightarrow \infty} a_{n}=0$, this gives no information.)
absolute convergence If $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=0}^{\infty} a_{n}$ converges. (But if $\sum_{n=0}^{\infty}\left|a_{n}\right|$ diverges, this gives no information.)
alternating series test If the sequence a_{n} decreases to 0 (that is, if $a_{0}>a_{1}>a_{2}>\cdots$ and $\lim _{n \rightarrow \infty} a_{n}=0$), then the series $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges.

Tips

First make an informed guess as to whether the series converges or diverges. Is a_{100} very small? Try the n'th term test for divergence.

Use limit comparison to find a simpler series you are familiar with where the terms behave like the terms of the given series.

If you see a factorial (!), use the ratio test.
If you see c^{n} (where c is a constant), try the root or ratio test. If you just see n^{c}, try the p-test.

