MATH 104 QUIZ # 3 Spring 2003 Covers Sections 8.8, 10.1-10.6 of the textbook

1. (10 points) Determine whether the following converge or diverge. If they converge, evaluate.
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Here we need to show that the limit is 0. We use L’Hopital’s Rule:
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2. (15 points)  Determine whether the following improper integrals converge or diverge. Justify
your answers.
o /z7 4+ 100x
) / ——— dx converges.
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The numerator v/x7 + 100z is dominated by the highest power of z, in other words
V2T 4100z ~ 27/ as x goes to 0o. So the quotient will be asymptotic to 27/2 /2% = 1/23/2
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that the original integral converges by the limit comparison test.
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as x goes to 0o. Since / converges by the p-test with p = 3/2, we can conclude
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the denominator will behave more and more like /2. In other words we can say that
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dz. As x goes to zero, z* dies out much faster than /z, so

First consider /

as r — 0.
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Since —j3 converges (by the [0,1]-version of the p test with p = 1/3) we can see that
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/ ———— dx converges by the limit comparison test.
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Now as x — oo both /z and z* go to infinity, but 2 goes much faster. So as x goes to
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Using the other p-test we see that
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/ ———— dx also converges by limit comparison.
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Since 0 < sin’x < 1 we conclude that
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For z in [1,00) we know that Inz < z and so
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Since for a rational function the highest powers of x dominate as x goes to oo we have
o ]
z/(23+2) ~ 1/2* as x — oo. By the p-test we know that / —; dx converges, so by the
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limit comparison test we know that / dx also converges and by the comparison
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test we conclude that the original integral also converges.
3. (25 points)  For each of the series below determine whether it converges or diverges. Justify
yOur answers.
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This series diverges. For rational functions the highest power dominates as we go to
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infinity. So the nth term is asymptotic to n?/n® = 1/n as n goes to infinity. Since > —
n

diverges by the p-test with p = 1, we conclude that the original series diverges by the
limit comparison test.
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In this case we use the integral test. Observe that / 1796 = In(lnx)+C and lim;_,« In(Int) =
rlnz
>~ dx
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oo since limy ., Int = o0o. Therefore the improper integral / diverges. By the
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integral test the series diverges as well.
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In this case the ratio or root test works well. For example, with the ratio test we have
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Since this ratio is less than 1, the ratio test says that the series converges.
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Here the easiest solution uses the root test. The nth root of a, is simply 316
n

n goes to infinity this approaches 1/3. Since the nth root of a, goes to 1/3 and 1/3 is
less than 1, we conclude that the series behaves more and more like a geometric series
with 7 = 1/3 and so it converges.
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Here we can argue that n® + 1 is larger than n3. Since the square root function is
monotonically increasing we can say that vn3+1 > v/n3 > 0 and taking reciprocals
reverses inequalities on (0, 00) so

1 1
<
vni+1  n?

1
The sum Z —3j5 converges by the p-test with p = 3/2, so the original series also con-
n

verges, by the comparison test.



