
MATH 104 QUIZ # 3 Spring 2003 Covers Sections 8.8, 10.1-10.6 of the textbook

1. (10 points) Determine whether the following converge or diverge. If they converge, evaluate.
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(b)
∫ 1

0
x2 ln x dx First use integration by parts to find an antiderivative:

∫
x2 ln x dx =

x3 ln x
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−

∫ x2

3
dx =

x3 ln x

3
− x3

9
+ C

So∫ 1

0
x2 ln x dx = lim

t→0

x3 ln x

3
− x3

9

∣∣∣∣1
t

=
1 ln 1

3
− 1

9
− lim

t→0

x3 ln x

3
+

0

9
= −1

9
− 1

3
lim
t→0

t3 ln t = −1
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Here we need to show that the limit is 0. We use L’Hôpital’s Rule:

lim
t→0

t3 ln t = lim
t→0

ln t

1/t3
= lim

t→0

1/t

−3/t4
= lim

t→0
−t3

3
= 0.

2. (15 points) Determine whether the following improper integrals converge or diverge. Justify
your answers.

(a)
∫ ∞
1

√
x7 + 100x

x5
dx converges.

The numerator
√

x7 + 100x is dominated by the highest power of x, in other words√
x7 + 100x ∼ x7/2 as x goes to∞. So the quotient will be asymptotic to x7/2/x5 = 1/x3/2

as x goes to ∞. Since
∫ ∞
1

dx

x3/2
converges by the p-test with p = 3/2, we can conclude

that the original integral converges by the limit comparison test.

(b)
∫ ∞
0

6
√

x√
x + x4

dx We need to split the integral, say at x = 1 since both endpoints are

problematic.

First consider
∫ 1

0

6
√

x√
x + x4

dx. As x goes to zero, x4 dies out much faster than
√

x, so

the denominator will behave more and more like
√

x. In other words we can say that

6
√

x√
x + x4

∼
6
√

x√
x

=
1

x1/2−1/6
=

1

x1/3
as x → 0.



Since
1

x1/3
converges (by the [0,1]-version of the p test with p = 1/3) we can see that

∫ 1

0

6
√

x√
x + x4

dx converges by the limit comparison test.

Now as x →∞ both
√

x and x4 go to infinity, but x4 goes much faster. So as x goes to
infinity,

6
√

x√
x + x4

dx ∼
6
√

x

x4
=

1

x4−1/6
as x →∞.

Using the other p-test we see that∫ ∞
1

6
√

x√
x + x4

dx also converges by limit comparison.

(c)
∫ ∞
1

(ln x) sin2 x

x3 + 2
dx.

Since 0 ≤ sin2 x ≤ 1 we conclude that∫ ∞
1

(ln x) sin2 x

x3 + 2
dx ≤

∫ ∞
1

ln x

x3 + 2
dx

For x in [1,∞) we know that ln x < x and so∫ ∞
1

ln x

x3 + 2
dx <

∫ ∞
1

x

x3 + 2
dx

Since for a rational function the highest powers of x dominate as x goes to ∞ we have

x/(x3 +2) ∼ 1/x2 as x →∞. By the p-test we know that
∫ ∞
1

1

x2
dx converges, so by the

limit comparison test we know that
∫ ∞
1

x

x3 + 2
dx also converges and by the comparison

test we conclude that the original integral also converges.

3. (25 points) For each of the series below determine whether it converges or diverges. Justify
your answers.

(a)
∞∑

n=1

n2 + 5n

(n + 1)(n + 2)(n + 3)

This series diverges. For rational functions the highest power dominates as we go to

infinity. So the nth term is asymptotic to n2/n3 = 1/n as n goes to infinity. Since
∞∑
1

1

n
diverges by the p-test with p = 1, we conclude that the original series diverges by the
limit comparison test.

(b)
∞∑

n=2

1

n ln n

In this case we use the integral test. Observe that
∫ dx

x ln x
= ln(ln x)+C and limt→∞ ln(ln t) =

∞ since limt→∞ ln t = ∞. Therefore the improper integral
∫ ∞
2

dx

x ln x
diverges. By the

integral test the series diverges as well.



(c)
∞∑

n=1

n2

3n

In this case the ratio or root test works well. For example, with the ratio test we have

lim
n→∞

(n + 1)2

3n+1
· 3n

n2
= lim

n→∞

(
n + 1

n

)2 (
1

3

)
=

1

3

Since this ratio is less than 1, the ratio test says that the series converges.

(d)
∞∑

n=1

(
n + 1

3n + 6

)n

Here the easiest solution uses the root test. The nth root of an is simply
n + 1

3n + 6
and as

n goes to infinity this approaches 1/3. Since the nth root of an goes to 1/3 and 1/3 is
less than 1, we conclude that the series behaves more and more like a geometric series
with r = 1/3 and so it converges.

(e)
∞∑

n=1

1√
n3 + 1

Here we can argue that n3 + 1 is larger than n3. Since the square root function is
monotonically increasing we can say that

√
n3 + 1 >

√
n3 > 0 and taking reciprocals

reverses inequalities on (0,∞) so

1√
n3 + 1

<
1√
n3

The sum
∑ 1

n3/2
converges by the p-test with p = 3/2, so the original series also con-

verges, by the comparison test.


