MAT 104 Spring 2003 Quiz 2 (Sections 7.6, 8.1, 8.3, 8.4)

1. (10 points) Find $\int \frac{d x}{\left(1-x^{2}\right)^{3 / 2}}$

Make the substitution $x=\sin \theta$. Then $d x=\cos \theta d \theta$ and $1-x^{2}=\cos ^{2} \theta$.

$$
\int \frac{d x}{\left(1-x^{2}\right)^{3 / 2}}=\int \frac{\cos \theta}{\cos ^{3} \theta} d \theta=\int \sec ^{2} \theta d \theta=\tan \theta+C=\frac{x}{\sqrt{1-x^{2}}}+C
$$

2. (10 points) Find $\int(\sin 5 x \cos 3 x+\cos 5 x \sin 3 x) d x$

Here we can recognize the addition formula for the sine function:

$$
\sin (8 x)=\sin (3 x+5 x)=\sin 3 x \cos 5 x+\cos 3 x \sin 5 x
$$

So we have simply

$$
\int \sin (8 x) d x=-\frac{\cos 8 x}{8}+C
$$

Alternatively, if you did not recognize the addition formula for sine, you can use the formula from the text:

$$
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]
$$

Applying this with $\alpha=5 x$ and $\beta=3 x$ we find

$$
\sin 5 x \cos 3 x=\frac{1}{2}[\sin 8 x+\sin 2 x]
$$

Taking $\alpha=3 x$ and $\beta=5 x$ we get

$$
\sin 3 x \cos 5 x=\frac{1}{2}[\sin 8 x+\sin (-2 x)]=\frac{1}{2}[\sin 8 x-\sin 2 x] .
$$

So

$$
\sin 5 x \cos 3 x+\sin 3 x \cos 5 x=\frac{1}{2}[2 \sin 8 x]=\sin 8 x
$$

and now we can integrate to get $-\cos (8 x) / 8+C$.
3. (10 points) Consider the "triangular region" in the first quadrant bounded on the left by the y-axis and on the right by the curves $y=\sin x$ and $y=\cos x$. Compute the volume of the solid S obtained by revolving this region about the x-axis.
Sketching the region we find that the top boundary is the curve $y=\cos x$ and the bottom boundary is $y=\sin x$. The curves cross when $x=\pi / 4$. So we can fill this region with vertical slices whose length is $\cos x-\sin x$ as x runs from 0 to $\pi / 4$. When we rotate these slices about the x axis, we get washers whose outer radius is $\cos x$ and whose inner radius is $\sin x$. Thus

$$
\text { Volume }=\pi \int_{0}^{\pi / 4}\left(\cos ^{2} x-\sin ^{2} x\right) d x=\pi \int_{0}^{\pi / 4}\left(1-2 \sin ^{2} x\right) d x
$$

Replacing $\sin ^{2} x$ by $\frac{1-\cos 2 x}{2}$ we get

$$
\text { Volume }=\pi \int_{0}^{\pi / 4}[1-(1-\cos 2 x)] d x=\pi \int_{0}^{\pi / 4} \cos 2 x d x=\left.\pi \cdot \frac{\sin 2 x}{2}\right|_{0} ^{\pi / 4}=\frac{\pi}{2}
$$

4. (10 points) The region R is bounded by the curves $y=\frac{1}{\sqrt[4]{3 x^{2}+1}}, x=1$, the y-axis, and the x-axis.
(a) Compute the volume of the solid S_{1} obtained by revolving R around x-axis.

Slice vertically and revolve around the x-axis to get disks of radius $1 / \sqrt[4]{3 x^{2}+1}$. So cross-sectional area is $1 / \sqrt{3 x^{2}+1}$. Integrate to get volume:

$$
V=\pi \int_{0}^{1} \frac{d x}{\sqrt{3 x^{2}+1}}=\frac{\pi}{\sqrt{3}} \int_{0}^{\sqrt{3}} \frac{d u}{\sqrt{u^{2}+1}}=\frac{\pi}{\sqrt{3}} \int_{0}^{\pi / 3} \frac{\sec ^{2} \theta}{\sec \theta} d \theta
$$

(First substitute $u=\sqrt{3} x$, then $u=\tan \theta$.) So we have

$$
V=\frac{\pi}{\sqrt{3}} \int_{0}^{\pi / 3} \sec \theta d \theta=\left.\frac{\pi}{\sqrt{3}} \ln |\sec \theta+\tan \theta|\right|_{0} ^{\pi / 3}=\frac{\pi}{\sqrt{3}} \cdot \ln |2+\sqrt{3}| .
$$

(b) Compute the volume of the solid S_{2} obtained by revolving R around y-axis.

Again we slice vertically and rotate to get shells. The height of a typical shell will be $1 / \sqrt[4]{3 x^{2}+1}$. The radius through which it rotates will be x. So

$$
V=2 \pi \int_{0}^{1} \frac{x}{\sqrt[4]{3 x^{2}+1}} d x=\frac{2 \pi}{6} \int_{1}^{4} \frac{d u}{\sqrt[4]{u}}=\left.\frac{\pi}{3} \cdot \frac{4}{3} u^{3 / 4}\right|_{1} ^{4}=\frac{4 \pi}{9}(2 \sqrt{2}-1)
$$

5. (10 points) Find $\int \frac{d x}{(\sqrt[3]{x}+1) \sqrt{x}}$

Here, to get rid of the cube root and the square root, we make the substitution $u=\sqrt[6]{x}$. Then $u^{2}=\sqrt[3]{x}$ and $u^{3}=\sqrt{x}$. Since $d u=(1 / 6) x^{-5 / 6} d x$ we have $6 u^{5} d u=d x$. Thus

$$
\begin{aligned}
\int \frac{d x}{(\sqrt[3]{x}+1) \sqrt{x}} & =\int \frac{6 u^{5}}{u^{3}\left(u^{2}+1\right)} d u=6 \int \frac{u^{2}}{u^{2}+1} d u \\
& =6 \int\left(\frac{u^{2}+1}{u^{2}+1}-\frac{1}{u^{2}+1}\right) d u=6 \int\left(1-\frac{1}{u^{2}+1}\right) d u \\
& =6[u-\arctan u]+C \\
& =6 \sqrt[6]{x}-6 \arctan (\sqrt[6]{x})+C
\end{aligned}
$$

