MAT 104 Spring 2003 Quiz 2 (Sections 7.6, 8.1, 8.3, 8.4)

1. (10 points) Find $\int \frac{dx}{(1-x^2)^{3/2}}$

Make the substitution $x = \sin \theta$. Then $dx = \cos \theta \, d\theta$ and $1 - x^2 = \cos^2 \theta$.

$$\int \frac{dx}{(1-x^2)^{3/2}} = \int \frac{\cos\theta}{\cos^3\theta} \, d\theta = \int \sec^2\theta \, d\theta = \tan\theta + C = \frac{x}{\sqrt{1-x^2}} + C.$$

2. (10 points) Find $\int (\sin 5x \cos 3x + \cos 5x \sin 3x) dx$

Here we can recognize the addition formula for the sine function:

 $\sin(8x) = \sin(3x + 5x) = \sin 3x \cos 5x + \cos 3x \sin 5x.$

So we have simply

$$\int \sin(8x) \, dx = -\frac{\cos 8x}{8} + C.$$

Alternatively, if you did not recognize the addition formula for sine, you can use the formula from the text:

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

Applying this with $\alpha = 5x$ and $\beta = 3x$ we find

$$\sin 5x \cos 3x = \frac{1}{2} [\sin 8x + \sin 2x]$$

Taking $\alpha = 3x$ and $\beta = 5x$ we get

$$\sin 3x \cos 5x = \frac{1}{2} [\sin 8x + \sin(-2x)] = \frac{1}{2} [\sin 8x - \sin 2x].$$

So

$$\sin 5x \cos 3x + \sin 3x \cos 5x = \frac{1}{2} [2 \sin 8x] = \sin 8x$$

and now we can integrate to get $-\cos(8x)/8 + C$.

3. (10 points) Consider the "triangular region" in the first quadrant bounded on the left by the y-axis and on the right by the curves $y = \sin x$ and $y = \cos x$. Compute the volume of the solid S obtained by revolving this region about the x-axis.

Sketching the region we find that the top boundary is the curve $y = \cos x$ and the bottom boundary is $y = \sin x$. The curves cross when $x = \pi/4$. So we can fill this region with vertical slices whose length is $\cos x - \sin x$ as x runs from 0 to $\pi/4$. When we rotate these slices about the x axis, we get washers whose outer radius is $\cos x$ and whose inner radius is $\sin x$. Thus

Volume
$$= \pi \int_0^{\pi/4} (\cos^2 x - \sin^2 x) \, dx = \pi \int_0^{\pi/4} (1 - 2\sin^2 x) \, dx$$

Replacing $\sin^2 x$ by $\frac{1 - \cos 2x}{2}$ we get

Volume
$$= \pi \int_0^{\pi/4} [1 - (1 - \cos 2x)] dx = \pi \int_0^{\pi/4} \cos 2x \, dx = \pi \cdot \frac{\sin 2x}{2} \Big|_0^{\pi/4} = \frac{\pi}{2}$$

- 4. (10 points) The region R is bounded by the curves $y = \frac{1}{\sqrt[4]{3x^2 + 1}}$, x = 1, the y-axis, and the x-axis.
 - (a) Compute the volume of the solid S_1 obtained by revolving R around x-axis. Slice vertically and revolve around the x-axis to get disks of radius $1/\sqrt[4]{3x^2+1}$. So cross-sectional area is $1/\sqrt{3x^2+1}$. Integrate to get volume:

$$V = \pi \int_0^1 \frac{dx}{\sqrt{3x^2 + 1}} = \frac{\pi}{\sqrt{3}} \int_0^{\sqrt{3}} \frac{du}{\sqrt{u^2 + 1}} = \frac{\pi}{\sqrt{3}} \int_0^{\pi/3} \frac{\sec^2 \theta}{\sec \theta} \, d\theta.$$

(First substitute $u = \sqrt{3}x$, then $u = \tan \theta$.) So we have

$$V = \frac{\pi}{\sqrt{3}} \int_0^{\pi/3} \sec \theta \, d\theta = \frac{\pi}{\sqrt{3}} \ln |\sec \theta + \tan \theta| \Big|_0^{\pi/3} = \frac{\pi}{\sqrt{3}} \cdot \ln |2 + \sqrt{3}|.$$

(b) Compute the volume of the solid S_2 obtained by revolving R around y-axis.

Again we slice vertically and rotate to get shells. The height of a typical shell will be $1/\sqrt[4]{3x^2+1}$. The radius through which it rotates will be x. So

$$V = 2\pi \int_0^1 \frac{x}{\sqrt[4]{3x^2 + 1}} \, dx = \frac{2\pi}{6} \int_1^4 \frac{du}{\sqrt[4]{u}} = \frac{\pi}{3} \cdot \frac{4}{3} u^{3/4} \Big|_1^4 = \frac{4\pi}{9} (2\sqrt{2} - 1)$$

5. (10 points) Find $\int \frac{dx}{(\sqrt[3]{x}+1)\sqrt{x}}$

Here, to get rid of the cube root and the square root, we make the substitution $u = \sqrt[6]{x}$. Then $u^2 = \sqrt[3]{x}$ and $u^3 = \sqrt{x}$. Since $du = (1/6)x^{-5/6} dx$ we have $6u^5 du = dx$. Thus

$$\int \frac{dx}{(\sqrt[3]{x}+1)\sqrt{x}} = \int \frac{6u^5}{u^3(u^2+1)} du = 6 \int \frac{u^2}{u^2+1} du$$
$$= 6 \int \left(\frac{u^2+1}{u^2+1} - \frac{1}{u^2+1}\right) du = 6 \int \left(1 - \frac{1}{u^2+1}\right) du$$
$$= 6[u - \arctan u] + C$$
$$= 6\sqrt[6]{x} - 6\arctan(\sqrt[6]{x}) + C.$$