MAT 104 Quiz 1, due Feb 21, 2003 on simple substitutions, integration by parts and partial fractions

1. (10 points) Find $\int \frac{e^{1 / x}}{x^{3}} d x$.

We make the substitution $t=1 / x$ and then use integration by parts.
If $t=1 / x$, then $d t=\left(-1 / x^{2}\right) d x$ so $d t=-t^{2} d u$. Thus

$$
\int \frac{e^{1 / x}}{x^{3}} d x=-\int t^{3} e^{t} \frac{d t}{t^{2}}=-\int t e^{t} d t=-t e^{t}+\int e^{t} d t=-t e^{t}+e^{t}+C=-\frac{e^{1 / x}}{x}+e^{1 / x}+C .
$$

Here we have used integration by parts with $u=t$ and $d v=e^{t} d t$ so $d u=d t$ and $v=e^{t}$.
2. (10 points) Find $\int_{0}^{\pi / 2} \frac{\cos x}{2-\cos ^{2} x} d x$. (Hint: Use the identity $\sin ^{2} x+\cos ^{2} x=1$.)

The denominator $2-\cos ^{2} x$ is the same as $2-\left(1-\sin ^{2} x\right)=1+\sin ^{2} x$. The integral becomes

$$
\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin ^{2} x} d x=\int_{\sin 0}^{\sin \pi / 2} \frac{d u}{1+u^{2}} \text { from the subsitution } u=\sin x \text { and } d u=\cos x d x .
$$

So we get $\arctan (1)-\arctan 0=\frac{\pi}{4}-0=\frac{\pi}{4}$.
3. (10 points) Find $\int 3 x^{2} \arctan x^{3} d x$.

Note: You may be used to calling the inverse tangent function $\tan ^{-1}$ instead of arctan. Both notations are standard. So $\arctan x^{3}$ means exactly the same as $\tan ^{-1}\left(x^{3}\right)$.
If $t=x^{3}$ then $d t=3 x^{2} d x$ and we get $\int \arctan (t) d t$. Now use integration by parts with $u=\arctan t$ and $d v=d t$. Thus $d u=d t /\left(1+t^{2}\right)$ and $v=t$. So

$$
\int \arctan t d t=t \arctan t-\int \frac{t d t}{1+t^{2}}=t \arctan t-\frac{1}{2} \int \frac{2 t d t}{1+t^{2}}=t \arctan t-\frac{1}{2} \ln \left(1+t^{2}\right)+C
$$

Going back to the original variable

$$
\int 3 x^{2} \arctan x^{3} d x=x^{3} \arctan x^{3}-\ln \sqrt{1+x^{6}}+C .
$$

Note: You can also do this problem using integration by parts directly, without first making a u-substitution. In that case, you let $u=\arctan \left(x^{3}\right)$ and $d v=3 x^{2} d x$. In order to do this problem correctly, you must remember the CHAIN RULE - which tells you that $d u=$ $\frac{1}{1+\left(x^{3}\right)^{2}} \cdot 3 x^{2} d x$.
4. (10 points) Find $\int_{1}^{2} \frac{\ln x}{(x-3)^{2}} d x$.

Start with integration by parts. Let $u=\ln x$ and $d v=(x-3)^{-2} d x$. Then $d u=d x / x$ and $v=-(x-3)^{-1}$. So

$$
\int_{1}^{2} \frac{\ln x}{(x-3)^{2}} d x=-\left.\frac{\ln x}{x-3}\right|_{1} ^{2}+\int_{1}^{2} \frac{d x}{x(x-3)}
$$

To compute this integral, we find the partial fraction decomposition of the integrand.

$$
\frac{1}{x(x-3)}=\frac{A}{x}+\frac{B}{x-3}=\frac{A(x-3)+B x}{x(x-3)} \Rightarrow A(x-3)+B x=1 .
$$

Setting $x=3$ we find that $3 B=1$ so $B=1 / 3$. Setting $x=0$ we find that $-3 A=1$ so $A=-1 / 3$. So

$$
\begin{aligned}
\int_{1}^{2} \frac{\ln x}{(x-3)^{2}} d x & =\left.\left(-\frac{\ln x}{x-3}+\frac{1}{3} \ln |x-3|-\frac{1}{3} \ln |x|\right)\right|_{1} ^{2} \\
& =-\frac{\ln 2}{2-3}+\frac{\ln 1}{1-3}+\frac{1}{3} \ln |2-3|-\frac{1}{3} \ln 2-\frac{1}{3} \ln |1-3|-\frac{1}{3} \ln 1 \\
& =\ln 2-\frac{\ln 2}{3}-\frac{\ln 2}{3}=\frac{\ln 2}{3} \quad(\text { since } \ln 1=0 .)
\end{aligned}
$$

5. (10 points) Find $\int \frac{x^{3}}{x^{2}+2 x+5} d x$.

The rational function we want to integrate here is not proper. So ther first thing we must do is long division. This tells us that

$$
\frac{x^{3}}{x^{2}+2 x+5}=x-2-\frac{x-10}{x^{2}+2 x+5}
$$

So our main work is to integrate the new, proper, fraction:

$$
\begin{aligned}
\int \frac{x-10}{x^{2}+2 x+5} d x & =\int \frac{x-10}{x^{2}+2 x+1+4} d x \\
& =\int \frac{x-10}{(x+1)^{2}+4} d x \\
& =\int \frac{u-11}{u^{2}+4} d u \quad \text { from } u=x+1, d u=d x, u-11=x-10 . \\
& =\frac{1}{2} \int \frac{2 u}{u^{2}+4} d u-11 \int \frac{d u}{u^{2}+4} \\
& =\frac{1}{2}\left(u^{2}+4\right)-\frac{11}{2} \arctan \left(\frac{u}{2}\right)+C \\
& =\ln \sqrt{x^{2}+2 x+5}-\frac{11}{2} \arctan \left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

Putting it all together we have

$$
\int \frac{x^{3}}{x^{2}+2 x+5} d x=\frac{x^{2}}{2}-2 x-\ln \sqrt{x^{2}+2 x+5}+\frac{11}{2} \arctan \left(\frac{x+1}{2}\right)+C .
$$

