1. Evaluate $\int \frac{5 d x}{x^{3}+2 x^{2}+5 x}$.
2. For each of the following integrals, state whether it converges or diverges, and give your reasons carefully and clearly.
a. $\int_{-\infty}^{\infty} \cos 2 t d t$.
b. $\int_{1}^{\infty} \frac{x^{3} d x}{1+x^{4}}$.
3. For each of the following series, state whether it converges or diverges, and give your reasons carefully and clearly.
a. $\sum_{n=1}^{\infty} e^{-n \ln n}$.
b. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1+\frac{1}{n}}$.
4. Find the Taylor series, centered at -1 , of $f(x)=\frac{1}{x}$.
5. Estimate $\int_{0}^{1 / 2} e^{-x^{3}} d x$ with an error no bigger than $1 / 100$. Give your reasons.
6. Find $\lim _{x \rightarrow 0} \frac{(x-\sin x)^{2}}{x^{6}}$.
7. Find the area between the origin and the curve given in polar coordinates by $r=\theta e^{\theta}$ for $0 \leq \theta \leq \pi$.
8. Find all roots of $x^{6}-3 x^{3}+9=0$ in polar form: $x=r e^{i \theta}$.
9. Consider the region under the curve $y=e^{-x}$ and above the x-axis for $0 \leq x<\infty$.
a. Revolve it around the x-axis and find the volume.
b. Revolve it around the y-axis and find the volume.
10. Find the arc length of the curve given by $y=x^{2}$ for $0 \leq x \leq \sqrt{2}$. (You may find the formula

$$
\int \sec ^{3} \theta d \theta=\frac{\sec \theta \tan \theta}{2}+\frac{1}{2} \int \sec \theta d \theta
$$

useful.)
11. The mass m of a crystal in a solution grows at a rate proportional to $m^{2 / 3}$. The original mass is 1 gram and the mass after 24 hours is 8 grams. Find the exact value of the mass as a function of time.

