Euler's Formula

Where does Euler's formula

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

come from? How do we even define, for example, e^{i} ? We can't multiple e by itself the square root of minus one times.

The answer is to use the Taylor series for the exponential function. For any complex number z we define e^{z} by

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Since $\left|z^{n}\right|=|z|^{n}$, this series converges absolutely: $\sum_{n=0}^{\infty} \frac{|z|^{n}}{n!}$ is a real series that we already know converges.

If we multiply the series for e^{z} term-by-term with the series for e^{w}, collect terms of the same total degree, and use a certain famous theorem of algebra, we find that the law of exponents

$$
e^{z+w}=e^{z} \cdot e^{w}
$$

continues to hold for complex numbers.
Now for Euler's formula:

$$
\begin{aligned}
e^{i \theta} & =\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{\theta^{7}}{7!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots\right) \\
& =\cos \theta+i \sin \theta .
\end{aligned}
$$

The special case $\theta=2 \pi$ gives

$$
e^{2 \pi i}=1
$$

This celebrated formula links together three numbers of totally different origins: e comes from analysis, π from geometry, and i from algebra.

Here is just one application of Euler's formula. The addition formulas for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$ are somewhat hard to remember, and their geometric proofs usually leave something to be desired. But it is impossible to forget that

$$
e^{i(\alpha+\beta)}=e^{i \alpha} \cdot e^{i \beta}
$$

Now use Euler's formula thrice:

$$
\begin{aligned}
\cos (\alpha+\beta)+i \sin (\alpha+\beta) & =[\cos \alpha+i \sin \alpha] \cdot[\cos \beta+i \sin \beta] \\
& =(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+i(\cos \alpha \sin \beta+\sin \alpha \sin \beta) .
\end{aligned}
$$

Equate the real and imaginary parts and presto! we have

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta .
\end{aligned}
$$

