Mathematics 104

Practice Quiz 3C

1. Let $I=\int \frac{1}{1+e^{x}} d x$. Substitute for the troublesome part of the integrand: let $y=e^{x}$. Then $x=\ln y$ and $d x=d y / y$, so $I=\int \frac{1}{1+y} \frac{d y}{y}$. Set

$$
\frac{1}{(1+y) y}=\frac{A}{1+y}+\frac{B}{y}, \quad 1=A y+B(1+y)
$$

For $y=-1$ we find $A=-1$ and for $y=0$ we find $B=1$. Hence

$$
I=-\ln |1+y|+\ln |y|+C=-\ln \left(1+e^{x}\right)+\ln e^{x}+C=-\ln \left(1+e^{x}\right)+x+C .
$$

Notice that since $y=e^{x}, y$ and $1+y$ are automatically positive, and we can drop the absolute value signs.
2.

$$
\begin{aligned}
& \text { Let } I=\int x \ln x d x, \\
& \\
& \qquad \begin{array}{ll}
u=\ln x, & d v=x d x \\
d u=\frac{d x}{x}, & v=\frac{1}{2} x^{2}
\end{array}
\end{aligned}
$$

Then

$$
I=\frac{1}{2} x^{2} \ln x-\frac{1}{2} \int \frac{x^{2}}{x} d x=\frac{1}{2} x^{2} \ln x-x^{2}+C
$$

(Thanks to Dale Shepherd for catching the numerical mistake in the previous answer.)
3. Let $I=\int_{1 / \sqrt{2}}^{1} \sqrt{1-x^{2}} d x$ and $x=\sin \theta$. Then $\sqrt{1-x^{2}}=\cos \theta$ and $d x=\cos \theta d \theta$. When $x=1, \theta=\pi / 2$ and when $x=1 / \sqrt{2}, \theta=\pi / 4$. Therefore

$$
\begin{aligned}
I & =\int_{\pi / 4}^{\pi / 2} \cos ^{2} \theta d \theta=\int_{\pi / 4}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta \\
& =\left.\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right)\right|_{\pi / 4} ^{\pi / 2}=\frac{\pi}{4}-\left(\frac{\pi}{8}+\frac{1}{4}\right)=\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

Note: expressions like $\sin ^{-1} 1$ and $\sin ^{-1} \frac{1}{\sqrt{2}} \quad$ should be simplified.

