
Mat104 Solutions to Taylor and Power Series Problems from Old Exams

(1) (a). This is a 0/0 form. We can use Taylor series to understand the limit.

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ . . .

e−x = 1− x +
x2

2!
− x3

3!
+

x4

4!
· · ·+ (−1)nxn

n!
+ . . .

Thus ex − e−x = 2x +
2x3

3!
+

2x5

5!
+ . . .

From this we find that

ex − e−x − 2x =
2x3

3!
+ higher degree terms

As x approaches 0, the lowest power of x will dominate because the higher degree terms
vanish much more rapidly. We can say that

ex + e−x − 2x ∼ 2x3

3!
as x → 0.

Next we consider the denominator.

x ln(1 + x) = x(x− x2/2 + x3/3− x4/4 + . . . ) = x2 − x3

2
+

x4

3
− x5

4
+ . . . .

Thus the denominator x2 − x ln(1 + x) will be dominated by its lowest degree term
x3

2
as

we let x → 0 and so

ex + e−x − 2x

x2 − x ln(1 + x)
∼ 2x3/3!

x3/2
=

4

6
=

2

3
as x → 0.

(1b) Again we have a 0/0 form. In a similar manner we manipulate Taylor series to
determine what power of x the numerator and denominator resemble as x approaches 0.
First recall that

cos x = 1− x2/2! + x4/4!− x6/6! + . . . and sin x = x− x3/3! + x5/5!− x7/7! + . . .

Then we can easily compute that

cos x2 − 1 + x4/2 = x8/4! plus higher degree terms

x2(x− sin x)2 = x8/(3!3!) plus higher degree terms

Thus
cos x2 − 1 + x4/2

x2(x− sin x)2
∼ x8/4!

x8/(3!3!)
=

3!3!

4!
=

3

2
as x → 0

(2) Rewrite n tan(1/n) as
tan(1/n)

1/n
. This is a 0/0 form and we can use L’Hôpital’s Rule to

show that the limit is 1.
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(3) Use the Taylor series for sin x and ex to understand how the numerator behaves near x = 0.

(sin x)(ex2
) = (x− x3/3! + x5/5!− . . . )(1 + x2 + x4/2 + . . . )

= (x + x3 − x3/3! + higher degree terms )

So
sin x · ex2 − x = 5x3/6 + higher degree terms.

Now for the denominator.

ln(1 + x3) = x3 − (x3)2/2 + (x3)3/3− · · · = x3 + higher degree terms.

We conclude that the quotient will go to 5/6 as x goes to 0.

(4) Here we use the Taylor series for cos x.

cos x = 1− x2/2! + x4/4!− x6/6! + . . . =⇒ 1− cos x = x2/2!− x4/4! + x6/6!− . . . .

So when x is close to 0, 1− cos x ∼ x2/2!. When n is large, then 1/n will be close to 0, so
1− cos(1/n) ∼ 1/2n2. Thus n2(1− cos(1/n)) ∼ 1/2 as n goes to infinity.

(5) Here it is useful to combine the fractions

1

sin x
− 1

1− e−x
=

(1− e−x)− sin x

(sin x)(1− e−x)

Again we use power series to understand how the numerator and denominator behave near
x = 0.

1− e−x − sin x = −x2/2 + higher order terms

(sin x)(1− e−x) = (x− x3/3! + x5/5! + . . . )(x− x2/2 + x3/3! + . . . )

= x2 + higher order terms.

So the quotient will behave like
−x2/2

x2
and go to −1/2 as x goes to 0.

(6) Use the Taylor series for cos(x), substitute x3 instead of x. Thus we find that

cos(x3)− 1 = −x6/2 + higher order terms

Similarly,

sin(x2)− x2 = −x6

3!
+ higher order terms

and so the quotient
cos x3 − 1

sin x2 − x2
goes to

−x6/2

−x6/6
= 3 as x goes to 0.

(7) Using the Taylor series for sin x, cos x and for ex:

sin x− x = −x3/3! + higher order terms

(cos x− 1)(e2x − 1) = (−x2/2! + x4/4!− x6/6! + . . . )(2x + (2x)2/2! + (2x)3/3! + . . . )

= −x3 + higher order terms

So
sin x− x

(cos x− 1)(e2x − 1)
=

−x3/6

−x3
→ 1

6
as x → 0.
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(8) Use the absolute ratio test:∣∣∣∣an+1

an

∣∣∣∣ =
|x|n+1

(n + 1)2 + 1
· n

2 + 1

|x|n
= |x|

(
n2 + 1

n2 + 2n + 2

)
→ |x| as n →∞

Therefore the series converges absolutely if |x| < 1 and diverges if |x| > 1. If |x| = 1, the
ratio test gives no information, so we have to look at the endpoints separately:

x = 1 =⇒
∞∑

n=0

(−1)n

n2 + 1
an absolutely convergent series by comparison to

1

n2

x = −1 =⇒
∞∑

n=0

1

n2 + 1
an absolutely convergent series by comparison to

1

n2

Conclusion: This power series is absolutely convergent on [−1, 1] and diverges everywhere
else.

(9) Use the absolute ratio test:∣∣∣∣an+1

an

∣∣∣∣ =
en+1|x− 1|n+1

2n+1(n + 1)
· 2n · n
en · |x− 1|n

=
e

2
· n

n + 1
· |x− 1| → e

2
|x− 1| as n →∞

The series converges absolutely if this limit is less than 1, diverges if this limit is greater

than 1 and must be checked when the limit is equal to 1. Since
e

2
· |x − 1| is less than 1

whenever |x− 1| < 2

e
, so the series is absolutely convergent on (1− 2

e
, 1+

2

e
) and divergent

on (−∞, 1− 2

e
) and on (1 +

2

e
,∞). Now we check the endpoints:

x− 1 =
2

e
gives the series

∞∑
n=1

(e

2

)n

·
(

2

e

)n

· 1

n
=

∞∑
n=1

1

n
a divergent series

x− 1 =
−2

e
gives

∞∑
n=1

(−1)n

n
a conditionally convergent (alternating) series.

Conclusion: This power series is absolutely convergent on (1 − 2

e
, 1 +

2

e
), conditionally

convergent at 1− 2

e
and divergent everywhere else.

(10) Since

sin(t2) = t2 − (t2)3/3! + (t2)5/5!− (t2)7/7! + · · ·+ (−1)kt4k+2

(2k + 1)!
+ . . .

when we integrate we get

f(x) = x3/3− x7/(7 · 3!) + x11/(11 · 5!)− x15/(15 · 7!) + · · ·+ (−1)kx4k+3

(4k + 3)(2k + 1)!
+ . . .

The coefficient of x100 in the Taylor expansion is, by definition,
f (100)(0)

100!
. But our compu-

tation shows that x100 appears with coefficient 0. Conclusion: f (100)(0) = 0.
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(11) 1− cos(2x2) =
∞∑

k=1

(−1)k+1 · 4k · x4k

(2k)!
. Dividing through by x we find

1− cos(2x2)

x
=

∞∑
k=1

(−1)k+1 · 4k · x4k−1

(2k)!
=

4x3

2!
− 16x7

4!
+

64x11

6!
− . . .

Since the coefficient of x8 is zero, we conclude that f (8)(0) = 0. Since the coefficient of x7

is −16/4! = −2/3 we conclude that f (7)(0)/7! = −2/3 and thus f (7)(0) = −2 · 7!

3
.

(12)

(a) ln(1 + x3) = x3 − x6

2
+

x9

3
− x12

4
+ · · ·+ (−1)n−1x3n

n
+ . . .

and this will be valid if x3 ∈ (−1, 1], that is, if x is in (−1, 1].

(b)
1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · · =

∞∑
k=0

(−1)k x2k valid on (−1, 1).

=⇒ x

1 + x2
= x− x3 + x5 − x7 + x9 − · · · =

∞∑
k=0

(−1)k x2k+1 also valid on (−1, 1).

(13)

(a) ex2
= 1 + x2 + x4/2! + x6/3! + · · ·+ x2n/n! + . . . valid on (−∞,∞)

(b)
1

1− x3
= 1 + x3 + x6 + x9 + · · ·+ x3n + . . . valid if |x3| < 1 that is, on (−1, 1)

(c) (1 + x2) = 1 + 2x + x2 = 1 + 2x + x2 + 0 · x3 + 0 · x4 + 0 · x5 + · · ·+ 0 · xn + . . .

(13d) Find the first three terms of the Taylor series at x = 1 for f(x) =
x

1 + x
. We need

to compute the first two derivatives and evaluate at x = 1. First f(1) = 1/2. Next

f ′(1) =
1

(1 + x)2

∣∣∣∣
x=1

=
1

4

f ′′(1) = (−2)(1 + x)−3

∣∣∣∣
x=1

=
−2

23
= −1

4

=⇒ Taylor expansion =
1

2
+

x− 1

4
− 1

4

(x− 1)2

2!
+ . . .

=
1

2
+

x− 1

4
− (x− 1)2

8
+ . . .
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(14) Normally we cannot substitute
√

x into a power series and still get a power series, but in
this case we are OK because the Taylor series for cosine contains only even terms:

x cos
√

x = x

(
1− x/2! + x2/4!− x3/6! + · · ·+ (−1)kxk

(2k)!
+ . . .

)

= x− x2/2! + x3/4!− x4/6! + · · ·+ (−1)kxk+1

(2k)!
+ . . .

(15)

(a) cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)kx2k

(2k)!
+ . . .

(b)
1

1 + x
= 1− x + x2 − x3 + x4 − · · ·+ (−1)nxn + . . . valid on (−1, 1)

(c)
cos x

1 + x
=

(
1− x2

2!
+

x4

4!
− x6

6!
+ . . .

)
(1− x + x2 − x3 + x4 − . . . )

= 1− x + x2(1− 1/2!) + x3(−1 + 1/2!) + . . .

= 1− x +
x2

2
− x3

2
+ higher order terms

(15d) The coefficient of x3 is on the one hand
f ′′′(0)

3!
and on the other hand we found by

multiplying power series that it was −1/2. Thus f ′′′(0) = −3!/2 = −3.

(16)

sin t = t− t3

3!
+

t5

5!
− · · ·+ (−1)kt2k+1

(2k + 1)!
+ . . .

=⇒ sin t

t
= 1− t2

3!
+

t4

5!
− · · ·+ (−1)kt2k

(2k + 1)!
+ . . .

This series is absolutely convergent on (−∞,∞) since

lim
k→∞

∣∣∣∣ t2k+2

(2k + 3)!
· (2k + 1)!

t2k

∣∣∣∣ = lim
k→∞

|t|2

(2k + 3)(2k + 2)
= 0.

We can integrate this series to get the series expansion for F (x):

F (x) = x− x3

3 · 3!
+

x5

5 · 5!
− · · ·+ (−1)kx2k+1

(2k + 1)(2k + 1)!
+ . . .

Absolute convergence is guaranteed on the same interval (−∞,∞). (Basic principle – you
can’t ruin absolute convergence by integrating or differentiating). Finally,

F (20)(0) = (20!)(coefficient of x20) = 0 =⇒ F (20)(0) = 0.

F (21)(0) = (21!)(coefficient of x21) = (21!) · (−1)10

21 · 21!
=⇒ F (21)(0) =

1

21
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(17)

ex − 1

x
=

1

x

(
x + x2/2! + x3/3! + · · ·+ xn/n! + . . .

)
= 1 + x/2! + x2/3! + · · ·+ xn−1/n! + . . .

This is absolutely convergent on (−∞,∞) since∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ xn

(n + 1)!
· n!

xn−1

∣∣∣∣ =
|x|

n + 1
→ 0 as n →∞.

f (100)(0)

100!
= coefficient of x100 =

1

101!
=⇒ f (100)(0) = 100!/101! = 1/101.

(18)

ex = 1 + x +
x2

2!
+ · · ·+ xn−1

(n− 1)!
+

xn

n!
+ . . .

xex = x + x2 +
x3

2!
+ · · ·+ xn

(n− 1)!
+

xn+1

n!
+ . . .

(1 + x)ex = 1 + 2x + x2(1/2! + 1) + x3(1/3! + 1/2!) + · · ·+ xn(1/n! + 1/(n− 1)!) + . . .

=
∞∑

n=0

1 + n

n!
xn.

We are also asked to find the first four terms of the Taylor expansion of 1/
√

x2 + 1
about x = 0. First compute the expansion for (1 + u)−1/2 and then make a substitution.

f(0) = 1

f ′(u) = (−1/2)(1 + u)−3/2 =⇒ f ′(0) = −1/2.

f ′′(u) = (−1/2)(−3/2)(1 + u)−5/2 =⇒ f ′′(0) = 3/4.

f ′′′(u) = (−1/2)(−3/2)(−5/2)(1 + u)−7/2 =⇒ f ′′′(0) = −15/8

=⇒ (1 + u)−1/2 = 1− u/2 + (3/4)u2/2!− (15/8)u3/3! + . . .

=⇒ (1 + u)−1/2 = 1− u/2 + 3u2/8− 5u3/16 + . . .

=⇒ (1 + x2)−1/2 = 1− x2/2 + 3x4/8− 5x6/16 + . . .

(19) Use the absolute ratio test.∣∣∣∣an+1

an

∣∣∣∣ = · · · = (n + 1)2 + 1

n2 + 1
· n + 1

n + 2
· 1

4
· |x− 3| → |x− 3|

4
as n →∞.

So the series is absolutely convergent if the limit |x−3|/4 is less than 1, that is if |x−3| < 4.
The series is divergent if |x−3| is bigger than 4. We must check the endpoints. If x−3 = 4,
that is, if x = 7 the series becomes

∞∑
n=0

n2 + 1

n + 1
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which diverges because its nth term grows without bound as n goes to infinity. If x−3 = −4,
that is, if x = −1, then the series becomes

∞∑
n=0

(−1)n n2 + 1

n + 1

which also diverges by the nth term test.
Conclusion: This series is absolutely convergent on (−1, 7) and divergent everywhere

else.

(20) Again use the absolute ratio test. In this case∣∣∣∣an+1

an

∣∣∣∣ = · · · = |2x− 1| · n

n + 1
· ln n

ln(n + 1)

By L’Hôpital’s Rule, both fractions go to 1 as n goes to infinity. So the series is absolutely
convergent if |2x− 1| < 1 and divergent if |2x− 1| > 1. Check endpoints:

2x− 1 = 1 gives
∑∞

2

1

n ln n
divergent by the integral test

2x− 1 = −1 gives
∑∞

2

(−1)n

n ln n
conditionally convergent by Alternating Series Test

Conclusion: absolutely convergent on (0,1). conditionally convergent at x = 0. Divergent
everywhere else.

(21) Use the absolute ratio test. This series converges absolutely when |x−2| < 1 (that is, for x
in (1, 3)). The series diverges if |x− 2| > 1. If x− 2 = 1 the series diverges by comparison

to
∑ 1

n
. If x− 2 = −1 the series converges (conditionally) by the alternating series test.

f (17)(2)

17!
= coefficient of (x− 2)17 =

(17 + 1)2

173
=⇒ f (17)(2) = 17!(18)2/173 =

16! · 182

172
.

(22) The absolute ratio test give∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)n+1

nn
|x| = (n + 1) ·

(
n + 1

n

)n

· |x|.

Recall that

(
n + 1

n

)n

goes to e as n goes to∞. So the quotient |an+1/an| equals 0 if x = 0,

but for any other choice of x it goes to ∞ as n does. This power series diverges except at
its center x = 0.

(23) In this case |an+1/an| approaches |x|/5 as n goes to ∞. The series is absolutely convergent
on (−5, 5). The radius of convergence is 5.

(24) Here |an+1/an| approaches |x− 1|/2 as n goes to ∞. So we have absolute convergence on
(−1, 3), divergence if x > 3 or if x < −1. Check endpoints.

x = 3 =⇒ x− 1 = 2 =⇒ the series is
∑ n + 1

2n + 1
,divergent by the nth term test.

x = −1 =⇒ x− 1 = −2 =⇒ the series is
∑ n + 1

2n + 1
(−1)n ,again divergent by the nth term test

Conclusion: Absolutely convergent on (−1, 3). Divergent elsewhere.
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(25) To estimate
√

11 we use the Taylor series for f(x) =
√

x centered at the point x = 9. First
we compute the derivatives:

f(x) =
√

x =⇒ f(9) = 3

f ′(x) = (1/2)x−1/2 =
1

2
√

x
=⇒ f ′(9) =

1

6

f ′′(x) = (−1/2)(1/2)x−3/2 = −1

4

(
1√
x

)3

=⇒ f ′′(9) = −1

4
· 1

27
= − 1

108

f ′′′(x) = (−3/2)(−1/4)x−5/2 =
3

8

(
1√
x

)5

=⇒ f ′′′(9) =
3

8
· 1

35
=

1

8 · 34

We can see a pattern emerging in these derivatives, but for us it is enough to notice that
the numbers f (n)(9) will alternate in sign, and the Taylor series will be an alternating series
(after the first term, and as long as we choose x bigger than 9.)

f(x) ≈ f(9) + f ′(9)(x− 9) +
f ′′(9)(x− 9)2

2!
+

f ′′′(9)(x− 9)3

3!
+ . . .

= 3 +
x− 9

6
− (x− 9)2

2(108)
+

(x− 9)3

8 · 34 · 3!
− . . .

Thus, taking x = 11,
√

11 ≈ 3 +
2

6
− 4

2(108)
+

8

8 · 34 · 3!
− · · · = 3 +

1

3
− 1

54
+

1

6 · 81
− . . . .

This series converges to
√

11 and after the first term it becomes an alternating series. We
conclude that

First order (tangent line) approx to
√

11 = 3 +
1

3
=

10

3

Second order approx. to
√

11 = 3 +
1

3
− 1

54

Third order approx. to
√

11 = 3 +
1

3
− 1

54
+

1

486

Once the series alternates we know that the actual value
√

11 lies between any two partial
sums. So

3 +
1

3
− 1

54
<
√

11 < 3 +
1

3
− 1

54
+

1

486

or in other words,
√

11 ≈ 3 +
1

3
− 1

54
and the error is at most

1

486
.


