Mat104 Solutions to Taylor and Power Series Problems from Old Exams

(1) (a). This is a 0/0 form. We can use Taylor series to understand the limit.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}x^{n}}{n!} + \dots$$
Thus $e^{x} - e^{-x} = 2x + \frac{2x^{3}}{3!} + \frac{2x^{5}}{5!} + \dots$

From this we find that

 $e^x - e^{-x} - 2x = \frac{2x^3}{3!}$ + higher degree terms

As x approaches 0, the lowest power of x will dominate because the higher degree terms vanish much more rapidly. We can say that

$$e^{x} + e^{-x} - 2x \sim \frac{2x^{3}}{3!}$$
 as $x \to 0$.

Next we consider the denominator.

$$x\ln(1+x) = x(x-x^2/2+x^3/3-x^4/4+\dots) = x^2 - \frac{x^3}{2} + \frac{x^4}{3} - \frac{x^5}{4} + \dots$$

Thus the denominator $x^2 - x \ln(1+x)$ will be dominated by its lowest degree term $\frac{x^3}{2}$ as we let $x \to 0$ and so

$$\frac{e^x + e^{-x} - 2x}{x^2 - x\ln(1+x)} \sim \frac{2x^3/3!}{x^3/2} = \frac{4}{6} = \frac{2}{3} \text{ as } x \to 0.$$

(1b) Again we have a 0/0 form. In a similar manner we manipulate Taylor series to determine what power of x the numerator and denominator resemble as x approaches 0. First recall that

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 and $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

Then we can easily compute that

$$\cos x^2 - 1 + x^4/2 = x^8/4!$$
 plus higher degree terms

 $x^2(x - \sin x)^2 = x^8/(3!3!)$ plus higher degree terms

Thus

$$\frac{\cos x^2 - 1 + x^4/2}{x^2(x - \sin x)^2} \sim \frac{x^8/4!}{x^8/(3!3!)} = \frac{3!3!}{4!} = \frac{3}{2} \text{ as } x \to 0$$

(2) Rewrite $n \tan(1/n)$ as $\frac{\tan(1/n)}{1/n}$. This is a 0/0 form and we can use L'Hôpital's Rule to show that the limit is 1.

(3) Use the Taylor series for sin x and e^x to understand how the numerator behaves near x = 0.

$$(\sin x)(e^{x^2}) = (x - x^3/3! + x^5/5! - \dots)(1 + x^2 + x^4/2 + \dots)$$

 $= (x + x^3 - x^3/3! + \text{higher degree terms})$

So

 $\sin x \cdot e^{x^2} - x = 5x^3/6 +$ higher degree terms.

Now for the denominator.

$$\ln(1+x^3) = x^3 - (x^3)^2/2 + (x^3)^3/3 - \dots = x^3 +$$
 higher degree terms.

We conclude that the quotient will go to 5/6 as x goes to 0.

(4) Here we use the Taylor series for $\cos x$.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \implies 1 - \cos x = \frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} - \dots$$

So when x is close to 0, $1 - \cos x \sim x^2/2!$. When n is large, then 1/n will be close to 0, so $1 - \cos(1/n) \sim 1/2n^2$. Thus $n^2(1 - \cos(1/n)) \sim 1/2$ as n goes to infinity.

(5) Here it is useful to combine the fractions

$$\frac{1}{\sin x} - \frac{1}{1 - e^{-x}} = \frac{(1 - e^{-x}) - \sin x}{(\sin x)(1 - e^{-x})}$$

Again we use power series to understand how the numerator and denominator behave near x = 0.

 $1 - e^{-x} - \sin x = -x^2/2 + \text{ higher order terms}$

$$(\sin x)(1 - e^{-x}) = (x - x^3/3! + x^5/5! + \dots)(x - x^2/2 + x^3/3! + \dots)$$

 $= x^2 +$ higher order terms.

So the quotient will behave like $\frac{-x^2/2}{x^2}$ and go to -1/2 as x goes to 0.

(6) Use the Taylor series for $\cos(x)$, substitute x^3 instead of x. Thus we find that

 $\cos(x^3) - 1 = -x^6/2 +$ higher order terms

Similarly,

$$\sin(x^2) - x^2 = -\frac{x^6}{3!} + \text{ higher order terms}$$

and so the quotient $\frac{\cos x^3 - 1}{\sin x^2 - x^2}$ goes to $\frac{-x^6/2}{-x^6/6} = 3$ as x goes to 0.

(7) Using the Taylor series for $\sin x$, $\cos x$ and for e^x :

 $\sin x - x = -x^3/3! + \text{higher order terms}$

$$(\cos x - 1)(e^{2x} - 1) = (-x^2/2! + x^4/4! - x^6/6! + \dots)(2x + (2x)^2/2! + (2x)^3/3! + \dots)$$
$$= -x^3 + \text{ higher order terms}$$

So
$$\frac{\sin x - x}{(\cos x - 1)(e^{2x} - 1)} = \frac{-x^3/6}{-x^3} \to \frac{1}{6}$$
 as $x \to 0$.

(8) Use the absolute ratio test:

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{|x|^{n+1}}{(n+1)^2 + 1} \cdot \frac{n^2 + 1}{|x|^n} = |x| \left(\frac{n^2 + 1}{n^2 + 2n + 2}\right) \to |x| \text{ as } n \to \infty$$

Therefore the series converges absolutely if |x| < 1 and diverges if |x| > 1. If |x| = 1, the ratio test gives no information, so we have to look at the endpoints separately:

$$x = 1 \implies \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$
 an absolutely convergent series by comparison to $\frac{1}{n^2}$

$$x = -1 \implies \sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$
 an absolutely convergent series by comparison to $\frac{1}{n^2}$

Conclusion: This power series is absolutely convergent on [-1, 1] and diverges everywhere else.

(9) Use the absolute ratio test:

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{e^{n+1}|x-1|^{n+1}}{2^{n+1}(n+1)} \cdot \frac{2^n \cdot n}{e^n \cdot |x-1|^n} = \frac{e}{2} \cdot \frac{n}{n+1} \cdot |x-1| \to \frac{e}{2}|x-1| \text{ as } n \to \infty$$

The series converges absolutely if this limit is less than 1, diverges if this limit is greater than 1 and must be checked when the limit is equal to 1. Since $\frac{e}{2} \cdot |x-1|$ is less than 1 whenever $|x-1| < \frac{2}{e}$, so the series is absolutely convergent on $(1-\frac{2}{e}, 1+\frac{2}{e})$ and divergent on $(-\infty, 1-\frac{2}{e})$ and on $(1+\frac{2}{e}, \infty)$. Now we check the endpoints:

$$x-1 = \frac{2}{e}$$
 gives the series $\sum_{n=1}^{\infty} \left(\frac{e}{2}\right)^n \cdot \left(\frac{2}{e}\right)^n \cdot \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ a divergent series

$$x-1 = \frac{-2}{e}$$
 gives $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ a conditionally convergent (alternating) series.

Conclusion: This power series is absolutely convergent on $(1 - \frac{2}{e}, 1 + \frac{2}{e})$, conditionally convergent at $1 - \frac{2}{e}$ and divergent everywhere else.

(10) Since

$$\sin(t^2) = t^2 - (t^2)^3 / 3! + (t^2)^5 / 5! - (t^2)^7 / 7! + \dots + \frac{(-1)^k t^{4k+2}}{(2k+1)!} + \dots$$

when we integrate we get

$$f(x) = \frac{x^3}{3} - \frac{x^7}{(7 \cdot 3!)} + \frac{x^{11}}{(11 \cdot 5!)} - \frac{x^{15}}{(15 \cdot 7!)} + \dots + \frac{(-1)^k x^{4k+3}}{(4k+3)(2k+1)!} + \dots$$

The coefficient of x^{100} in the Taylor expansion is, by definition, $\frac{f^{(100)}(0)}{100!}$. But our computation shows that x^{100} appears with coefficient 0. Conclusion: $f^{(100)}(0) = 0$.

(11)
$$1 - \cos(2x^2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cdot 4^k \cdot x^{4k}}{(2k)!}$$
. Dividing through by x we find
$$\frac{1 - \cos(2x^2)}{x} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cdot 4^k \cdot x^{4k-1}}{(2k)!} = \frac{4x^3}{2!} - \frac{16x^7}{4!} + \frac{64x^{11}}{6!} - \dots$$

Since the coefficient of x^8 is zero, we conclude that $f^{(8)}(0) = 0$. Since the coefficient of x^7 is -16/4! = -2/3 we conclude that $f^{(7)}(0)/7! = -2/3$ and thus $f^{(7)}(0) = -\frac{2 \cdot 7!}{3}$.

(a)
$$\ln(1+x^3) = x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \frac{x^{12}}{4} + \dots + \frac{(-1)^{n-1}x^{3n}}{n} + \dots$$

and this will be valid if $x^3 \in (-1, 1]$, that is, if x is in (-1, 1].

(b)
$$\frac{1}{1+x^2} = 1-x^2+x^4-x^6+x^8-\dots = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 valid on $(-1,1)$.

$$\implies \frac{x}{1+x^2} = x-x^3+x^5-x^7+x^9-\dots = \sum_{k=0}^{\infty} (-1)^k x^{2k+1}$$
 also valid on $(-1,1)$.

(13)

(a)
$$e^{x^2} = 1 + x^2 + x^4/2! + x^6/3! + \dots + x^{2n}/n! + \dots$$
 valid on $(-\infty, \infty)$
(b) $\frac{1}{1-x^3} = 1 + x^3 + x^6 + x^9 + \dots + x^{3n} + \dots$ valid if $|x^3| < 1$ that is, on $(-1, 1)$
(c) $(1+x^2) = 1 + 2x + x^2 = 1 + 2x + x^2 + 0 \cdot x^3 + 0 \cdot x^4 + 0 \cdot x^5 + \dots + 0 \cdot x^n + \dots$

(13d) Find the first three terms of the Taylor series at x = 1 for $f(x) = \frac{x}{1+x}$. We need to compute the first two derivatives and evaluate at x = 1. First f(1) = 1/2. Next

$$\begin{aligned} f'(1) &= \left. \frac{1}{(1+x)^2} \right|_{x=1} = \frac{1}{4} \\ f''(1) &= \left. (-2)(1+x)^{-3} \right|_{x=1} = \frac{-2}{2^3} = -\frac{1}{4} \\ \implies \text{ Taylor expansion } &= \left. \frac{1}{2} + \frac{x-1}{4} - \frac{1}{4} \frac{(x-1)^2}{2!} + \dots \right. \\ &= \left. \frac{1}{2} + \frac{x-1}{4} - \frac{(x-1)^2}{8} + \dots \right. \end{aligned}$$

4

(14) Normally we cannot substitute \sqrt{x} into a power series and still get a power series, but in this case we are OK because the Taylor series for cosine contains only even terms:

$$x \cos \sqrt{x} = x \left(1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots + \frac{(-1)^k x^k}{(2k)!} + \dots \right)$$
$$= x - \frac{x^2}{2!} + \frac{x^3}{4!} - \frac{x^4}{6!} + \dots + \frac{(-1)^k x^{k+1}}{(2k)!} + \dots$$

(15)

(a)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^k x^{2k}}{(2k)!} + \dots$$

(b)
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots + (-1)^n x^n + \dots$$
 valid on $(-1, 1)$

(c)
$$\frac{\cos x}{1+x} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots\right) (1 - x + x^2 - x^3 + x^4 - \dots)$$

= $1 - x + x^2 (1 - 1/2!) + x^3 (-1 + 1/2!) + \dots$

$$= 1 - x + \frac{x^2}{2} - \frac{x^3}{2} +$$
 higher order terms

(15d) The coefficient of x^3 is on the one hand $\frac{f''(0)}{3!}$ and on the other hand we found by multiplying power series that it was -1/2. Thus f'''(0) = -3!/2 = -3.

(16)

$$\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \dots + \frac{(-1)^k t^{2k+1}}{(2k+1)!} + \dots$$
$$\implies \frac{\sin t}{t} = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \dots + \frac{(-1)^k t^{2k}}{(2k+1)!} + \dots$$

This series is absolutely convergent on $(-\infty, \infty)$ since

$$\lim_{k \to \infty} \left| \frac{t^{2k+2}}{(2k+3)!} \cdot \frac{(2k+1)!}{t^{2k}} \right| = \lim_{k \to \infty} \frac{|t|^2}{(2k+3)(2k+2)} = 0$$

We can integrate this series to get the series expansion for F(x):

$$F(x) = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \dots + \frac{(-1)^k x^{2k+1}}{(2k+1)(2k+1)!} + \dots$$

Absolute convergence is guaranteed on the same interval $(-\infty, \infty)$. (Basic principle – you can't ruin absolute convergence by integrating or differentiating). Finally,

$$F^{(20)}(0) = (20!)(\text{coefficient of } x^{20}) = 0 \implies F^{(20)}(0) = 0.$$

$$F^{(21)}(0) = (21!)(\text{coefficient of } x^{21}) = (21!) \cdot \frac{(-1)^{10}}{21 \cdot 21!} \implies F^{(21)}(0) = \frac{1}{21}$$

(17)

$$\frac{e^x - 1}{x} = \frac{1}{x} \left(x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots \right) = 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots + \frac{x^{n-1}}{n!} + \dots$$
This is checketable concentration (..., co., co.) since

This is absolutely convergent on $(-\infty, \infty)$ since

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^n}{(n+1)!} \cdot \frac{n!}{x^{n-1}}\right| = \frac{|x|}{n+1} \to 0 \text{ as } n \to \infty.$$

$$\frac{f^{(100)}(0)}{100!} = \text{ coefficient of } x^{100} = \frac{1}{101!} \implies f^{(100)}(0) = 100!/101! = 1/101.$$
(18)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} + \dots$$

$$xe^x = x + x^2 + \frac{x^3}{2!} + \dots + \frac{x^n}{(n-1)!} + \frac{x^{n+1}}{n!} + \dots$$

$$(1+x)e^x = 1 + 2x + x^2(1/2! + 1) + x^3(1/3! + 1/2!) + \dots + x^n(1/n! + 1/(n-1)!) + \dots$$

$$= \sum_{n=0}^{\infty} \frac{1+n}{n!} x^n.$$
We are also acked to find the first four terms of the Taylor expansion of $1/\sqrt{n!}$

We are also asked to find the first four terms of the Taylor expansion of $1/\sqrt{x^2+1}$ about x = 0. First compute the expansion for $(1+u)^{-1/2}$ and then make a substitution.

$$\begin{split} f(0) &= 1 \\ f'(u) &= (-1/2)(1+u)^{-3/2} \implies f'(0) = -1/2. \\ f''(u) &= (-1/2)(-3/2)(1+u)^{-5/2} \implies f''(0) = 3/4. \\ f'''(u) &= (-1/2)(-3/2)(-5/2)(1+u)^{-7/2} \implies f'''(0) = -15/8 \\ \implies (1+u)^{-1/2} = 1 - u/2 + (3/4)u^2/2! - (15/8)u^3/3! + \dots \\ \implies (1+u)^{-1/2} = 1 - u/2 + 3u^2/8 - 5u^3/16 + \dots \\ \implies (1+x^2)^{-1/2} = 1 - x^2/2 + 3x^4/8 - 5x^6/16 + \dots \end{split}$$

(19) Use the absolute ratio test.

$$\left|\frac{a_{n+1}}{a_n}\right| = \dots = \frac{(n+1)^2 + 1}{n^2 + 1} \cdot \frac{n+1}{n+2} \cdot \frac{1}{4} \cdot |x-3| \to \frac{|x-3|}{4} \text{ as } n \to \infty.$$

So the series is absolutely convergent if the limit |x-3|/4 is less than 1, that is if |x-3| < 4. The series is divergent if |x-3| is bigger than 4. We must check the endpoints. If x-3 = 4, that is, if x = 7 the series becomes

$$\sum_{n=0}^{\infty} \frac{n^2 + 1}{n+1}$$

which diverges because its *n*th term grows without bound as *n* goes to infinity. If x-3 = -4, that is, if x = -1, then the series becomes

$$\sum_{n=0}^{\infty} (-1)^n \frac{n^2 + 1}{n+1}$$

which also diverges by the nth term test.

Conclusion: This series is absolutely convergent on (-1, 7) and divergent everywhere else.

(20) Again use the absolute ratio test. In this case

$$\left|\frac{a_{n+1}}{a_n}\right| = \dots = |2x-1| \cdot \frac{n}{n+1} \cdot \frac{\ln n}{\ln(n+1)}$$

By L'Hôpital's Rule, both fractions go to 1 as n goes to infinity. So the series is absolutely convergent if |2x - 1| < 1 and divergent if |2x - 1| > 1. Check endpoints:

$$2x - 1 = 1$$
 gives $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ divergent by the integral test

2x - 1 = -1 gives $\sum_{2}^{\infty} \frac{(-1)^n}{n \ln n}$ conditionally convergent by Alternating Series Test Conclusion: absolutely convergent on (0,1). conditionally convergent at x = 0. Divergent

everywhere else.

(21) Use the absolute ratio test. This series converges absolutely when |x-2| < 1 (that is, for x in (1,3)). The series diverges if |x-2| > 1. If x-2 = 1 the series diverges by comparison to $\sum \frac{1}{n}$. If x-2 = -1 the series converges (conditionally) by the alternating series test. $f^{(17)}(2) = x + 2 = -1 \text{ (17 + 1)}^2 = x(17)(2) + 2 = -1 \text{ (18 + 18)}^2$

$$\frac{f^{(17)}(2)}{17!} = \text{ coefficient of } (x-2)^{17} = \frac{(17+1)^2}{17^3} \implies f^{(17)}(2) = 17!(18)^2/17^3 = \frac{16! \cdot 18^2}{17^2}.$$

(22) The absolute ratio test give

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)^{n+1}}{n^n} |x| = (n+1) \cdot \left(\frac{n+1}{n}\right)^n \cdot |x|.$$

Recall that $\left(\frac{n+1}{n}\right)^n$ goes to e as n goes to ∞ . So the quotient $|a_{n+1}/a_n|$ equals 0 if x = 0, but for any other choice of x it goes to ∞ as n does. This power series diverges except at its center x = 0.

- (23) In this case $|a_{n+1}/a_n|$ approaches |x|/5 as n goes to ∞ . The series is absolutely convergent on (-5, 5). The radius of convergence is 5.
- (24) Here $|a_{n+1}/a_n|$ approaches |x-1|/2 as n goes to ∞ . So we have absolute convergence on (-1,3), divergence if x > 3 or if x < -1. Check endpoints.

 $x = 3 \implies x - 1 = 2 \implies$ the series is $\sum \frac{n+1}{2n+1}$, divergent by the nth term test.

 $x = -1 \implies x - 1 = -2 \implies$ the series is $\sum \frac{n+1}{2n+1} (-1)^n$, again divergent by the nth term test Conclusion: Absolutely convergent on (-1, 3). Divergent elsewhere.

(25) To estimate $\sqrt{11}$ we use the Taylor series for $f(x) = \sqrt{x}$ centered at the point x = 9. First we compute the derivatives:

$$f(x) = \sqrt{x} \implies f(9) = 3$$

$$f'(x) = (1/2)x^{-1/2} = \frac{1}{2\sqrt{x}} \implies f'(9) = \frac{1}{6}$$

$$f''(x) = (-1/2)(1/2)x^{-3/2} = -\frac{1}{4}\left(\frac{1}{\sqrt{x}}\right)^3 \implies f''(9) = -\frac{1}{4} \cdot \frac{1}{27} = -\frac{1}{108}$$

$$f'''(x) = (-3/2)(-1/4)x^{-5/2} = \frac{3}{8}\left(\frac{1}{\sqrt{x}}\right)^5 \implies f'''(9) = \frac{3}{8} \cdot \frac{1}{3^5} = \frac{1}{8 \cdot 3^4}$$

We can see a pattern emerging in these derivatives, but for us it is enough to notice that the numbers $f^{(n)}(9)$ will alternate in sign, and the Taylor series will be an alternating series (after the first term, and as long as we choose x bigger than 9.)

$$f(x) \approx f(9) + f'(9)(x-9) + \frac{f''(9)(x-9)^2}{2!} + \frac{f'''(9)(x-9)^3}{3!} + \dots$$
$$= 3 + \frac{x-9}{6} - \frac{(x-9)^2}{2(108)} + \frac{(x-9)^3}{8 \cdot 3^4 \cdot 3!} - \dots$$

Thus, taking x = 11,

$$\sqrt{11} \approx 3 + \frac{2}{6} - \frac{4}{2(108)} + \frac{8}{8 \cdot 3^4 \cdot 3!} - \dots = 3 + \frac{1}{3} - \frac{1}{54} + \frac{1}{6 \cdot 81} - \dots$$

This series converges to $\sqrt{11}$ and after the first term it becomes an alternating series. We conclude that

First order (tangent line) approx to $\sqrt{11} = 3 + \frac{1}{3} = \frac{10}{3}$ Second order approx. to $\sqrt{11} = 3 + \frac{1}{3} - \frac{1}{54}$ Third order approx. to $\sqrt{11} = 3 + \frac{1}{3} - \frac{1}{54} + \frac{1}{486}$

Once the series alternates we know that the actual value $\sqrt{11}$ lies between any two partial sums. So

$$3 + \frac{1}{3} - \frac{1}{54} < \sqrt{11} < 3 + \frac{1}{3} - \frac{1}{54} + \frac{1}{486}$$

, $\sqrt{11} \approx 3 + \frac{1}{3} - \frac{1}{54}$ and the error is at most $\frac{1}{46}$

or in other words, $\sqrt{11} \approx 3 + \frac{1}{3} - \frac{1}{54}$ and the error is at most $\frac{1}{486}$.