Mat104 Solutions to Taylor and Power Series Problems from Old Exams

(1) (a). This is a $0 / 0$ form. We can use Taylor series to understand the limit.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}+\ldots \\
e^{-x} & =1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \cdots+\frac{(-1)^{n} x^{n}}{n!}+\ldots \\
\text { Thus } e^{x}-e^{-x} & =2 x+\frac{2 x^{3}}{3!}+\frac{2 x^{5}}{5!}+\ldots
\end{aligned}
$$

From this we find that

$$
e^{x}-e^{-x}-2 x=\frac{2 x^{3}}{3!}+\text { higher degree terms }
$$

As x approaches 0 , the lowest power of x will dominate because the higher degree terms vanish much more rapidly. We can say that

$$
e^{x}+e^{-x}-2 x \sim \frac{2 x^{3}}{3!} \text { as } x \rightarrow 0
$$

Next we consider the denominator.

$$
x \ln (1+x)=x\left(x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\ldots\right)=x^{2}-\frac{x^{3}}{2}+\frac{x^{4}}{3}-\frac{x^{5}}{4}+\ldots .
$$

Thus the denominator $x^{2}-x \ln (1+x)$ will be dominated by its lowest degree term $\frac{x^{3}}{2}$ as we let $x \rightarrow 0$ and so

$$
\frac{e^{x}+e^{-x}-2 x}{x^{2}-x \ln (1+x)} \sim \frac{2 x^{3} / 3!}{x^{3} / 2}=\frac{4}{6}=\frac{2}{3} \text { as } x \rightarrow 0 .
$$

(1b) Again we have a $0 / 0$ form. In a similar manner we manipulate Taylor series to determine what power of x the numerator and denominator resemble as x approaches 0 . First recall that
$\cos x=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+\ldots$ and $\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\ldots$
Then we can easily compute that

$$
\cos x^{2}-1+x^{4} / 2=x^{8} / 4!\text { plus higher degree terms }
$$

$x^{2}(x-\sin x)^{2}=x^{8} /(3!3!)$ plus higher degree terms
Thus

$$
\frac{\cos x^{2}-1+x^{4} / 2}{x^{2}(x-\sin x)^{2}} \sim \frac{x^{8} / 4!}{x^{8} /(3!3!)}=\frac{3!3!}{4!}=\frac{3}{2} \text { as } x \rightarrow 0
$$

(2) Rewrite $n \tan (1 / n)$ as $\frac{\tan (1 / n)}{1 / n}$. This is a $0 / 0$ form and we can use L'Hôpital's Rule to show that the limit is 1 .
(3) Use the Taylor series for $\sin x$ and e^{x} to understand how the numerator behaves near $x=0$.

$$
\begin{aligned}
(\sin x)\left(e^{x^{2}}\right) & =\left(x-x^{3} / 3!+x^{5} / 5!-\ldots\right)\left(1+x^{2}+x^{4} / 2+\ldots\right) \\
& =\left(x+x^{3}-x^{3} / 3!+\text { higher degree terms }\right)
\end{aligned}
$$

So

$$
\sin x \cdot e^{x^{2}}-x=5 x^{3} / 6+\text { higher degree terms. }
$$

Now for the denominator.

$$
\ln \left(1+x^{3}\right)=x^{3}-\left(x^{3}\right)^{2} / 2+\left(x^{3}\right)^{3} / 3-\cdots=x^{3}+\text { higher degree terms. }
$$

We conclude that the quotient will go to $5 / 6$ as x goes to 0 .
(4) Here we use the Taylor series for $\cos x$. $\cos x=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+\ldots \Longrightarrow 1-\cos x=x^{2} / 2!-x^{4} / 4!+x^{6} / 6!-\ldots$
So when x is close to $0,1-\cos x \sim x^{2} / 2$!. When n is large, then $1 / n$ will be close to 0 , so $1-\cos (1 / n) \sim 1 / 2 n^{2}$. Thus $n^{2}(1-\cos (1 / n)) \sim 1 / 2$ as n goes to infinity.
(5) Here it is useful to combine the fractions

$$
\frac{1}{\sin x}-\frac{1}{1-e^{-x}}=\frac{\left(1-e^{-x}\right)-\sin x}{(\sin x)\left(1-e^{-x}\right)}
$$

Again we use power series to understand how the numerator and denominator behave near $x=0$.

$$
\begin{aligned}
1-e^{-x}-\sin x & =-x^{2} / 2+\text { higher order terms } \\
(\sin x)\left(1-e^{-x}\right) & =\left(x-x^{3} / 3!+x^{5} / 5!+\ldots\right)\left(x-x^{2} / 2+x^{3} / 3!+\ldots\right) \\
& =x^{2}+\text { higher order terms. }
\end{aligned}
$$

So the quotient will behave like $\frac{-x^{2} / 2}{x^{2}}$ and go to $-1 / 2$ as x goes to 0 .
(6) Use the Taylor series for $\cos (x)$, substitute x^{3} instead of x. Thus we find that

$$
\cos \left(x^{3}\right)-1=-x^{6} / 2+\text { higher order terms }
$$

Similarly,

$$
\sin \left(x^{2}\right)-x^{2}=-\frac{x^{6}}{3!}+\text { higher order terms }
$$

and so the quotient $\frac{\cos x^{3}-1}{\sin x^{2}-x^{2}}$ goes to $\frac{-x^{6} / 2}{-x^{6} / 6}=3$ as x goes to 0 .
(7) Using the Taylor series for $\sin x, \cos x$ and for e^{x} :

$$
\sin x-x=-x^{3} / 3!+\text { higher order terms }
$$

$$
(\cos x-1)\left(e^{2 x}-1\right)=\left(-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+\ldots\right)\left(2 x+(2 x)^{2} / 2!+(2 x)^{3} / 3!+\ldots\right)
$$

$$
=-x^{3}+\text { higher order terms }
$$

$$
\text { So } \frac{\sin x-x}{(\cos x-1)\left(e^{2 x}-1\right)}=\frac{-x^{3} / 6}{-x^{3}} \rightarrow \frac{1}{6} \text { as } x \rightarrow 0 .
$$

(8) Use the absolute ratio test:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|^{n+1}}{(n+1)^{2}+1} \cdot \frac{n^{2}+1}{|x|^{n}}=|x|\left(\frac{n^{2}+1}{n^{2}+2 n+2}\right) \rightarrow|x| \text { as } n \rightarrow \infty
$$

Therefore the series converges absolutely if $|x|<1$ and diverges if $|x|>1$. If $|x|=1$, the ratio test gives no information, so we have to look at the endpoints separately:
$x=1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ an absolutely convergent series by comparison to $\frac{1}{n^{2}}$
$x=-1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ an absolutely convergent series by comparison to $\frac{1}{n^{2}}$
Conclusion: This power series is absolutely convergent on $[-1,1]$ and diverges everywhere else.
(9) Use the absolute ratio test:
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{e^{n+1}|x-1|^{n+1}}{2^{n+1}(n+1)} \cdot \frac{2^{n} \cdot n}{e^{n} \cdot|x-1|^{n}}=\frac{e}{2} \cdot \frac{n}{n+1} \cdot|x-1| \rightarrow \frac{e}{2}|x-1|$ as $n \rightarrow \infty$
The series converges absolutely if this limit is less than 1 , diverges if this limit is greater than 1 and must be checked when the limit is equal to 1 . Since $\frac{e}{2} \cdot|x-1|$ is less than 1 whenever $|x-1|<\frac{2}{e}$, so the series is absolutely convergent on $\left(1-\frac{2}{e}, 1+\frac{2}{e}\right)$ and divergent on $\left(-\infty, 1-\frac{2}{e}\right)$ and on $\left(1+\frac{2}{e}, \infty\right)$. Now we check the endpoints:
$x-1=\frac{2}{e}$ gives the series $\sum_{n=1}^{\infty}\left(\frac{e}{2}\right)^{n} \cdot\left(\frac{2}{e}\right)^{n} \cdot \frac{1}{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ a divergent series $x-1=\frac{-2}{e}$ gives $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ a conditionally convergent (alternating) series.
Conclusion: This power series is absolutely convergent on $\left(1-\frac{2}{e}, 1+\frac{2}{e}\right)$, conditionally convergent at $1-\frac{2}{e}$ and divergent everywhere else.
(10) Since

$$
\sin \left(t^{2}\right)=t^{2}-\left(t^{2}\right)^{3} / 3!+\left(t^{2}\right)^{5} / 5!-\left(t^{2}\right)^{7} / 7!+\cdots+\frac{(-1)^{k} t^{4 k+2}}{(2 k+1)!}+\ldots
$$

when we integrate we get

$$
f(x)=x^{3} / 3-x^{7} /(7 \cdot 3!)+x^{11} /(11 \cdot 5!)-x^{15} /(15 \cdot 7!)+\cdots+\frac{(-1)^{k} x^{4 k+3}}{(4 k+3)(2 k+1)!}+\ldots
$$

The coefficient of x^{100} in the Taylor expansion is, by definition, $\frac{f^{(100)}(0)}{100!}$. But our computation shows that x^{100} appears with coefficient 0 . Conclusion: $f^{(100)}(0)=0$.
(11) $1-\cos \left(2 x^{2}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cdot 4^{k} \cdot x^{4 k}}{(2 k)!}$. Dividing through by x we find

$$
\frac{1-\cos \left(2 x^{2}\right)}{x}=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cdot 4^{k} \cdot x^{4 k-1}}{(2 k)!}=\frac{4 x^{3}}{2!}-\frac{16 x^{7}}{4!}+\frac{64 x^{11}}{6!}-\ldots
$$

Since the coefficient of x^{8} is zero, we conclude that $f^{(8)}(0)=0$. Since the coefficient of x^{7} is $-16 / 4!=-2 / 3$ we conclude that $f^{(7)}(0) / 7!=-2 / 3$ and thus $f^{(7)}(0)=-\frac{2 \cdot 7!}{3}$.
(12)

$$
\text { (a) } \ln \left(1+x^{3}\right)=x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\frac{x^{12}}{4}+\cdots+\frac{(-1)^{n-1} x^{3 n}}{n}+\ldots
$$

and this will be valid if $x^{3} \in(-1,1]$, that is, if x is in $(-1,1]$.
(b) $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$ valid on $(-1,1)$.
$\Longrightarrow \frac{x}{1+x^{2}}=x-x^{3}+x^{5}-x^{7}+x^{9}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1}$ also valid on $(-1,1)$.
(13)
(a) $e^{x^{2}}=1+x^{2}+x^{4} / 2!+x^{6} / 3!+\cdots+x^{2 n} / n!+\ldots$ valid on $(-\infty, \infty)$
(b) $\frac{1}{1-x^{3}}=1+x^{3}+x^{6}+x^{9}+\cdots+x^{3 n}+\ldots$ valid if $\left|x^{3}\right|<1$ that is, on $(-1,1)$
(c) $\left(1+x^{2}\right)=1+2 x+x^{2}=1+2 x+x^{2}+0 \cdot x^{3}+0 \cdot x^{4}+0 \cdot x^{5}+\cdots+0 \cdot x^{n}+\ldots$
(13d) Find the first three terms of the Taylor series at $x=1$ for $f(x)=\frac{x}{1+x}$. We need to compute the first two derivatives and evaluate at $x=1$. First $f(1)=1 / 2$. Next

$$
\begin{aligned}
f^{\prime}(1) & =\left.\frac{1}{(1+x)^{2}}\right|_{x=1}=\frac{1}{4} \\
f^{\prime \prime}(1) & =\left.(-2)(1+x)^{-3}\right|_{x=1}=\frac{-2}{2^{3}}=-\frac{1}{4} \\
\Longrightarrow \text { Taylor expansion } & =\frac{1}{2}+\frac{x-1}{4}-\frac{1}{4} \frac{(x-1)^{2}}{2!}+\ldots \\
& =\frac{1}{2}+\frac{x-1}{4}-\frac{(x-1)^{2}}{8}+\ldots
\end{aligned}
$$

(14) Normally we cannot substitute \sqrt{x} into a power series and still get a power series, but in this case we are OK because the Taylor series for cosine contains only even terms:

$$
\begin{aligned}
x \cos \sqrt{x} & =x\left(1-x / 2!+x^{2} / 4!-x^{3} / 6!+\cdots+\frac{(-1)^{k} x^{k}}{(2 k)!}+\ldots\right) \\
& =x-x^{2} / 2!+x^{3} / 4!-x^{4} / 6!+\cdots+\frac{(-1)^{k} x^{k+1}}{(2 k)!}+\ldots
\end{aligned}
$$

(15)
(a) $\quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}+\ldots$
(b) $\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-\cdots+(-1)^{n} x^{n}+\ldots \quad$ valid on $(-1,1)$
(c) $\frac{\cos x}{1+x}=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)\left(1-x+x^{2}-x^{3}+x^{4}-\ldots\right)$
$=1-x+x^{2}(1-1 / 2!)+x^{3}(-1+1 / 2!)+\ldots$
$=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{2}+$ higher order terms
(15d) The coefficient of x^{3} is on the one hand $\frac{f^{\prime \prime \prime}(0)}{3!}$ and on the other hand we found by multiplying power series that it was $-1 / 2$. Thus $\dot{f}^{\prime \prime \prime \prime}(0)=-3!/ 2=-3$.

$$
\begin{align*}
\sin t & =t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\cdots+\frac{(-1)^{k} t^{2 k+1}}{(2 k+1)!}+\ldots \tag{16}\\
\Longrightarrow \frac{\sin t}{t} & =1-\frac{t^{2}}{3!}+\frac{t^{4}}{5!}-\cdots+\frac{(-1)^{k} t^{2 k}}{(2 k+1)!}+\cdots
\end{align*}
$$

This series is absolutely convergent on $(-\infty, \infty)$ since

$$
\lim _{k \rightarrow \infty}\left|\frac{t^{2 k+2}}{(2 k+3)!} \cdot \frac{(2 k+1)!}{t^{2 k}}\right|=\lim _{k \rightarrow \infty} \frac{|t|^{2}}{(2 k+3)(2 k+2)}=0
$$

We can integrate this series to get the series expansion for $F(x)$:

$$
F(x)=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)(2 k+1)!}+\cdots
$$

Absolute convergence is guaranteed on the same interval $(-\infty, \infty)$. (Basic principle - you can't ruin absolute convergence by integrating or differentiating). Finally,

$$
\begin{aligned}
& F^{(20)}(0)=(20!)\left(\text { coefficient of } x^{20}\right)=0 \Longrightarrow F^{(20)}(0)=0 . \\
& F^{(21)}(0)=(21!)\left(\text { coefficient of } x^{21}\right)=(21!) \cdot \frac{(-1)^{10}}{21 \cdot 21!} \Longrightarrow F^{(21)}(0)=\frac{1}{21}
\end{aligned}
$$

$\frac{e^{x}-1}{x}=\frac{1}{x}\left(x+x^{2} / 2!+x^{3} / 3!+\cdots+x^{n} / n!+\ldots\right)=1+x / 2!+x^{2} / 3!+\cdots+x^{n-1} / n!+\ldots$
This is absolutely convergent on $(-\infty, \infty)$ since

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n}}{(n+1)!} \cdot \frac{n!}{x^{n-1}}\right|=\frac{|x|}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

$$
\frac{f^{(100)}(0)}{100!}=\text { coefficient of } x^{100}=\frac{1}{101!} \Longrightarrow f^{(100)}(0)=100!/ 101!=1 / 101
$$

$$
\begin{align*}
e^{x} & =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n-1}}{(n-1)!}+\frac{x^{n}}{n!}+\cdots \tag{18}\\
x e^{x} & =x+x^{2}+\frac{x^{3}}{2!}+\cdots+\frac{x^{n}}{(n-1)!}+\frac{x^{n+1}}{n!}+\cdots \\
(1+x) e^{x} & =1+2 x+x^{2}(1 / 2!+1)+x^{3}(1 / 3!+1 / 2!)+\cdots+x^{n}(1 / n!+1 /(n-1)!)+\ldots \\
& =\sum_{n=0}^{\infty} \frac{1+n}{n!} x^{n} .
\end{align*}
$$

We are also asked to find the first four terms of the Taylor expansion of $1 / \sqrt{x^{2}+1}$ about $x=0$. First compute the expansion for $(1+u)^{-1 / 2}$ and then make a substitution.

$$
\begin{aligned}
& f(0)=1 \\
& f^{\prime}(u)=(-1 / 2)(1+u)^{-3 / 2} \Longrightarrow f^{\prime}(0)=-1 / 2 . \\
& f^{\prime \prime}(u)=(-1 / 2)(-3 / 2)(1+u)^{-5 / 2} \Longrightarrow f^{\prime \prime}(0)=3 / 4 . \\
& f^{\prime \prime \prime}(u)=(-1 / 2)(-3 / 2)(-5 / 2)(1+u)^{-7 / 2} \Longrightarrow f^{\prime \prime \prime}(0)=-15 / 8 \\
& \Longrightarrow(1+u)^{-1 / 2}=1-u / 2+(3 / 4) u^{2} / 2!-(15 / 8) u^{3} / 3!+\ldots \\
& \Longrightarrow(1+u)^{-1 / 2}=1-u / 2+3 u^{2} / 8-5 u^{3} / 16+\ldots \\
& \Longrightarrow\left(1+x^{2}\right)^{-1 / 2}=1-x^{2} / 2+3 x^{4} / 8-5 x^{6} / 16+\ldots
\end{aligned}
$$

(19) Use the absolute ratio test.

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\cdots=\frac{(n+1)^{2}+1}{n^{2}+1} \cdot \frac{n+1}{n+2} \cdot \frac{1}{4} \cdot|x-3| \rightarrow \frac{|x-3|}{4} \text { as } n \rightarrow \infty .
$$

So the series is absolutely convergent if the limit $|x-3| / 4$ is less than 1 , that is if $|x-3|<4$. The series is divergent if $|x-3|$ is bigger than 4 . We must check the endpoints. If $x-3=4$, that is, if $x=7$ the series becomes

$$
\sum_{n=0}^{\infty} \frac{n^{2}+1}{n+1}
$$

which diverges because its nth term grows without bound as n goes to infinity. If $x-3=-4$, that is, if $x=-1$, then the series becomes

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}+1}{n+1}
$$

which also diverges by the nth term test.
Conclusion: This series is absolutely convergent on ($-1,7$) and divergent everywhere else.
(20) Again use the absolute ratio test. In this case

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\cdots=|2 x-1| \cdot \frac{n}{n+1} \cdot \frac{\ln n}{\ln (n+1)}
$$

By L'Hôpital's Rule, both fractions go to 1 as n goes to infinity. So the series is absolutely convergent if $|2 x-1|<1$ and divergent if $|2 x-1|>1$. Check endpoints:
$2 x-1=1$ gives $\sum_{2}^{\infty} \frac{1}{n \ln n}$ divergent by the integral test
$2 x-1=-1$ gives $\sum_{2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ conditionally convergent by Alternating Series Test
Conclusion: absolutely convergent on $(0,1)$. conditionally convergent at $x=0$. Divergent everywhere else.
(21) Use the absolute ratio test. This series converges absolutely when $|x-2|<1$ (that is, for x in $(1,3))$. The series diverges if $|x-2|>1$. If $x-2=1$ the series diverges by comparison to $\sum \frac{1}{n}$. If $x-2=-1$ the series converges (conditionally) by the alternating series test.

$$
\frac{f^{(17)}(2)}{17!}=\text { coefficient of }(x-2)^{17}=\frac{(17+1)^{2}}{17^{3}} \Longrightarrow f^{(17)}(2)=17!(18)^{2} / 17^{3}=\frac{16!\cdot 18^{2}}{17^{2}}
$$

(22) The absolute ratio test give

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{n+1}}{n^{n}}|x|=(n+1) \cdot\left(\frac{n+1}{n}\right)^{n} \cdot|x| .
$$

Recall that $\left(\frac{n+1}{n}\right)^{n}$ goes to e as n goes to ∞. So the quotient $\left|a_{n+1} / a_{n}\right|$ equals 0 if $x=0$, but for any other choice of x it goes to ∞ as n does. This power series diverges except at its center $x=0$.
(23) In this case $\left|a_{n+1} / a_{n}\right|$ approaches $|x| / 5$ as n goes to ∞. The series is absolutely convergent on $(-5,5)$. The radius of convergence is 5 .
(24) Here $\left|a_{n+1} / a_{n}\right|$ approaches $|x-1| / 2$ as n goes to ∞. So we have absolute convergence on $(-1,3)$, divergence if $x>3$ or if $x<-1$. Check endpoints.
$x=3 \Longrightarrow x-1=2 \Longrightarrow$ the series is $\sum \frac{n+1}{2 n+1}$, divergent by the nth term test.
$x=-1 \Longrightarrow x-1=-2 \Longrightarrow$ the series is $\sum \frac{n+1}{2 n+1}(-1)^{n}$, again divergent by the nth term test
Conclusion: Absolutely convergent on $(-1,3)$. Divergent elsewhere.
(25) To estimate $\sqrt{11}$ we use the Taylor series for $f(x)=\sqrt{x}$ centered at the point $x=9$. First we compute the derivatives:

$$
\begin{aligned}
f(x)=\sqrt{x} & \Longrightarrow f(9)=3 \\
f^{\prime}(x)=(1 / 2) x^{-1 / 2}=\frac{1}{2 \sqrt{x}} & \Longrightarrow f^{\prime}(9)=\frac{1}{6} \\
f^{\prime \prime}(x)=(-1 / 2)(1 / 2) x^{-3 / 2}=-\frac{1}{4}\left(\frac{1}{\sqrt{x}}\right)^{3} & \Longrightarrow f^{\prime \prime}(9)=-\frac{1}{4} \cdot \frac{1}{27}=-\frac{1}{108} \\
f^{\prime \prime \prime}(x)=(-3 / 2)(-1 / 4) x^{-5 / 2}=\frac{3}{8}\left(\frac{1}{\sqrt{x}}\right)^{5} & \Longrightarrow f^{\prime \prime \prime}(9)=\frac{3}{8} \cdot \frac{1}{3^{5}}=\frac{1}{8 \cdot 3^{4}}
\end{aligned}
$$

We can see a pattern emerging in these derivatives, but for us it is enough to notice that the numbers $f^{(n)}(9)$ will alternate in sign, and the Taylor series will be an alternating series (after the first term, and as long as we choose x bigger than 9.)

$$
\begin{aligned}
f(x) & \approx f(9)+f^{\prime}(9)(x-9)+\frac{f^{\prime \prime}(9)(x-9)^{2}}{2!}+\frac{f^{\prime \prime \prime}(9)(x-9)^{3}}{3!}+\ldots \\
& =3+\frac{x-9}{6}-\frac{(x-9)^{2}}{2(108)}+\frac{(x-9)^{3}}{8 \cdot 3^{4} \cdot 3!}-\ldots
\end{aligned}
$$

Thus, taking $x=11$,

$$
\sqrt{11} \approx 3+\frac{2}{6}-\frac{4}{2(108)}+\frac{8}{8 \cdot 3^{4} \cdot 3!}-\cdots=3+\frac{1}{3}-\frac{1}{54}+\frac{1}{6 \cdot 81}-\ldots
$$

This series converges to $\sqrt{1} 1$ and after the first term it becomes an alternating series. We conclude that

First order (tangent line) approx to $\sqrt{11}=3+\frac{1}{3}=\frac{10}{3}$
Second order approx. to $\sqrt{11}=3+\frac{1}{3}-\frac{1}{54}$
Third order approx. to $\sqrt{11}=3+\frac{1}{3}-\frac{1}{54}+\frac{1}{486}$
Once the series alternates we know that the actual value $\sqrt{1} 1$ lies between any two partial sums. So

$$
3+\frac{1}{3}-\frac{1}{54}<\sqrt{11}<3+\frac{1}{3}-\frac{1}{54}+\frac{1}{486}
$$

or in other words, $\sqrt{11} \approx 3+\frac{1}{3}-\frac{1}{54}$ and the error is at most $\frac{1}{486}$.

