Mat104 Taylor Series and Power Series from Old Exams

(1) Use MacLaurin polynomials to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x^{2}-x \ln (1+x)}$
(b) $\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1+x^{4} / 2}{x^{2}(x-\sin x)^{2}}$
(2) Evaluate or show that $\lim _{n \rightarrow \infty} n \tan \left(\frac{1}{n}\right)$
(3) Find $\lim _{x \rightarrow 0} \frac{\sin x \cdot e^{x^{2}}-x}{\ln \left(1+x^{3}\right)}$.
(4) Find $\lim _{n \rightarrow \infty} n^{2}\left(1-\cos \frac{1}{n}\right)$ or show that it does not exist.
(5) Find $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{1-e^{-x}}\right)$
(6) Find $\lim _{x \rightarrow 0} \frac{\cos \left(x^{3}\right)-1}{\sin \left(x^{2}\right)-x^{2}}$.
(7) Find $\lim _{x \rightarrow 0} \frac{\sin x-x}{(\cos x-1)\left(e^{2 x}-1\right)}$.
(8) For what real values of x does $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n^{2}+1}$ converge? Give your reasons.
(9) For what real values of x does $\sum_{n=1}^{\infty} \frac{e^{n}(x-1)^{n}}{2^{n} \cdot n}$ converge? Give your reasons.
(10) Let $f(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$. Find the Taylor series at 0 (i.e., the Taylor series about $a=0$) of $f(x)$, giving enough terms to make the pattern clear. Also, find the 100th derivative of $f(x)$ at 0 .
(11) Find the Taylor series at 0 of $f(x)=\frac{1-\cos \left(2 x^{2}\right)}{x}$ and find $f^{(7)}(0)$ and $f^{(8)}(0)$.
(12) Find the Taylor series about 0 of
(a) $\ln \left(1+x^{3}\right)$
(b) $\frac{x}{1+x^{2}}$
(13) (a) Find the Taylor series at $x=0$ for $e^{x^{2}}$.
(b) Find the Taylor series at $x=0$ for $\frac{1}{1-x^{3}}$.
(c) Find the Taylor series at $x=0$ for $(1+x)^{2}$.
(d) Find the first three terms of the Taylor series at $x=1$ for $\frac{x}{1+x}$.
(14) Find the Taylor series at $x=0$ (McLaurin series) of $f(x)=x \cos \sqrt{x}$.
(15) Find the Taylor series about 0 for each of the following functions. Give the expansion up to and including terms involving x^{3}.
(a) $\cos x$
(b) $\frac{1}{1+x}$
(c) $\frac{\cos x}{1+x}$

From your answer to part (c), give the value of $f^{\prime \prime \prime}(0)$ where $f(x)=\frac{\cos x}{1+x}$.
(16) Let $F(x)$ be the function defined by

$$
F(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

Find the MacLaurin series of the function F and compute its radius of convergence. Find $F^{(20)}(0)$ and $F^{(21)}(0)$.
(17) Let $f(x)=\frac{e^{x}-1}{x}$. Find the Taylor series at 0 (McLaurin series) for $f(x)$. For what values of x does the series converge? Give your reasons. Find the $100^{\text {th }}$ derivative of f at 0 .
(18) Find the Taylor-MacLaurin Series about $x=0$ for $(x+1) e^{x}$. Find the first four terms in the Taylor expansion about $x=0$ for $\frac{1}{\sqrt{x^{2}+1}}$.
(19) Find all values of x for which $\sum_{n=0}^{\infty} \frac{n^{2}+1}{n+1} \cdot \frac{1}{4^{n}} \cdot(x-3)^{n}$ converges.
(20) For what x does the series $\sum_{n=2}^{\infty} \frac{(2 x-1)^{n}}{n \ln n}$ converge? Give your reasons.
(21) For what x does $f(x)=\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n^{3}} \cdot(x-2)^{n}$ converge? Find $f^{(17)}(2)$.
(22) For what x does $\sum_{n=0}^{\infty}(n x)^{n}$ converge?
(23) Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{n^{2}}{5^{n}} \cdot x^{n}$.
(24) For which values of x does the power series

$$
\sum_{n=1}^{\infty} \frac{n+1}{2 n+1} \cdot \frac{(x-1)^{n}}{2^{n}}
$$

converge absolutely? conditionally?
(25) Find a good approximation of $\sqrt{11}$ using some Taylor polynomial of degree 2, and estimate the error.

