For the following series, state whether they are convergent or divergent, and give your reasons.
(1) $\sim \frac{1}{n}$, diverges by the limit comparison test (LCT)
(2) converges by ratio test
(3) converges by ratio test
(4) $\sim \frac{1}{n}$, diverges by LCT
(5) $\sim \frac{2^{n}}{3^{n}}$, converges by LCT
(6) converges by the alternating series test (AST). It is conditionally convergent only since taking absolute values gives a divergent sum. ($\ln n<n$ implies that $\ln (\ln n)<\ln n$ so $\left.\frac{1}{\ln (\ln n)}>\frac{1}{\ln n}>\frac{1}{n}\right)$
(7) converges by AST, conditionally convergent since summing $1 / \sqrt{n}$ gives a divergent series (p -test with $\mathrm{p}=1 / 2$).
(8) convergent by LCT
(9) $\sim \frac{1}{n^{3}}$ so convergent by LCT
(10) diverges since $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
(11) $\sim \frac{1}{n}$ so divergent by LCT
(12) convergent by the ratio test
(13) conditionally convergent
(14) converges by ratio test. $a_{n+1} / a_{n} \rightarrow 1 / e$.
(15) converges by the nth root test.
(16) convergent by LCT. Asymptotic to $\frac{2^{n}+6^{n}}{7^{n}}$, the sum of two convergent geometric series.
(17) divergent since $a_{n} \rightarrow e$.
(18) divergent by LCT since $\sim \frac{1}{\sqrt{n}}$
(19) convergent by LCT since $\sim \frac{1}{n^{3 / 2}}$
(20) convergent by the ratio test
(21) convergent by AST. Conditionally convergent only since $\frac{1}{\ln ^{2} n+2} \sim \frac{1}{\ln ^{2}}$ and $\frac{1}{\ln ^{2} n}>\frac{1}{n \ln n}$ which gives a divergent sum by the integral test. $(\ln (\ln x)) \rightarrow \infty$ as $x \rightarrow \infty$.
(22) converges by the ratio test.
(23) divergent since $\frac{\ln n}{n}>\frac{1}{n}$, which diverges by the p-test.
(24) $\sim \frac{1}{n^{2}}$ so converges
(25) converges by the integral test. (Make the substitution $u=\ln (\ln x)$.
(26) $\sim \frac{5}{2 n^{2}}$ so converges.
(27) conditionally convergent.
(28) sum of geometric series with $r=1 / 2$ and $r=-1 / 6$.
(29) convergent by the ratio test
(30) convergent by the ratio test
(31) $\sim \frac{1}{n^{2}}$ so converges.
(32) difference of convergent geometric series
(33) $\sim \frac{1}{n}$ so diverges.
(34) divergent geometric series with $r>1$.
(35) convergent since $\leq \frac{1}{n^{2}+1}$
(36) divergent. 7^{n} dominates. Divide top and bottom by 7^{n} and take the limit
(37) converges, behaves like $\left(\frac{5}{7}\right)^{n}-\left(\frac{2}{7}\right)^{n}$, difference of two convergent geometric series
(38) $\sim \frac{1}{n}$ so diverges.
(39) converges by the ratio test.
(40) $\ln \left(n^{2}+1\right) \sim \ln \left(n^{2}\right)=2 \ln n$. So $n \ln \left(n^{2}+1\right) \sim n \ln n$ and this diverges by the integral test. So both diverge.
(41) converges by the ratio test
(42) absolutely convergent. bounded by $\frac{1}{n^{2} \ln n}$ which converges by comparison to $1 / n^{2}$.
(43) diverges by the integral test. (Take the derivative of $\ln (\ln (\ln x))$.
(44) $\sim \frac{1}{n}$ so diverges
(45) conditionally convergent
(46) divergent since $a_{n} \rightarrow \pi / 2$
(47) divergent since $a_{n} \rightarrow e^{2}$
(48) converges by the root test
(49) $\sim \frac{n}{n^{2}}$ so diverges
(50) converges by the ratio test - Use L'Hôpital's rule to show that $\frac{\ln \left(n^{2}+2 n+2\right)}{\ln \left(n^{2}+1\right)} \rightarrow 1$.
(51) converges by the ratio test
(52) difference of convergent geometric series
(53) compare to $\frac{1}{n \ln ^{2} n}$. By the integral test this series converges, so both converge.
(54) behaves like $\frac{1 / n}{\sqrt{n}} \operatorname{since} \sin (1 / n) \sim 1 / n$ when n is large and $\cos (1 / n) \approx 0$ when n is large.
(55) $\sim \frac{e}{n^{2}+1}$ so converges.
(56) converges by the ratio test (or the root test if you know that $n^{1 / n}$ goes to 1 as n goes to infinity.)
(57) converges by the ratio test

