Mat104 Fall 2002. Infinite Series Problems From Old Exams

For the following series, state whether they are convergent or divergent, and give your reasons.

- (1) $\sim \frac{1}{n}$, diverges by the limit comparison test (LCT)
- (2) converges by ratio test
- (3) converges by ratio test
- (4) $\sim \frac{1}{n}$, diverges by LCT (5) $\sim \frac{2^n}{3^n}$, converges by LCT
- (6) converges by the alternating series test (AST). It is conditionally convergent only since taking absolute values gives a divergent sum. $(\ln n < n \text{ implies that } \ln(\ln n) < \ln n \text{ so}$ $\frac{1}{\ln(\ln n)} > \frac{1}{\ln n} > \frac{1}{n}$
- (7) converges by AST, conditionally convergent since summing $1/\sqrt{n}$ gives a divergent series (p-test with p = 1/2).
- (8) convergent by LCT
- (9) $\sim \frac{1}{n^3}$ so convergent by LCT (10) diverges since $a_n \to \infty$ as $n \to \infty$.
- (11) $\sim \frac{1}{n}$ so divergent by LCT
- (12) convergent by the ratio test
- (13) conditionally convergent
- (14) converges by ratio test. $a_{n+1}/a_n \rightarrow 1/e$.
- (15) converges by the nth root test.
- (16) convergent by LCT. Asymptotic to $\frac{2^n + 6^n}{7^n}$, the sum of two convergent geometric series.
- (17) divergent since $a_n \to e$.
- (18) divergent by LCT since $\sim \frac{1}{\sqrt{n}}$
- (19) convergent by LCT since $\sim \frac{1}{n^{3/2}}$
- (20) convergent by the ratio test
- (21) convergent by AST. Conditionally convergent only since $\frac{1}{\ln^2 n + 2} \sim \frac{1}{\ln^2}$ and $\frac{1}{\ln^2 n} > \frac{1}{n \ln n}$ which gives a divergent sum by the integral test. $(\ln(\ln x)) \to \infty$ as $x \to \infty$.
- (22) converges by the ratio test.
- (23) divergent since $\frac{\ln n}{n} > \frac{1}{n}$, which diverges by the *p*-test.
- (24) $\sim \frac{1}{n^2}$ so converges
- (25) converges by the integral test. (Make the substitution $u = \ln(\ln x)$.
- (26) $\sim \frac{5}{2n^2}$ so converges.
- (27) conditionally convergent.
- (28) sum of geometric series with r = 1/2 and r = -1/6.
- (29) convergent by the ratio test
- (30) convergent by the ratio test

(31) $\sim \frac{1}{n^2}$ so converges.

- (32) difference of convergent geometric series
- (33) $\sim \frac{1}{n}$ so diverges. (34) divergent geometric series with r > 1.
- (35) convergent since $\leq \frac{1}{n^2 + 1}$ (36) divergent. 7ⁿ dominates. Divide top and bottom by 7ⁿ and take the limit

(37) converges, behaves like $\left(\frac{5}{7}\right)^n - \left(\frac{2}{7}\right)^n$, difference of two convergent geometric series

(38) $\sim \frac{1}{n}$ so diverges.

- (39) converges by the ratio test.
- (40) $\ln(n^2+1) \sim \ln(n^2) = 2 \ln n$. So $n \ln(n^2+1) \sim n \ln n$ and this diverges by the integral test. So both diverge.
- (41) converges by the ratio test
- (42) absolutely convergent. bounded by $\frac{1}{n^2 \ln n}$ which converges by comparison to $1/n^2$.
- (43) diverges by the integral test. (Take the derivative of $\ln(\ln(\ln x))$.
- (44) $\sim \frac{1}{n}$ so diverges
- (45) conditionally convergent
- (46) divergent since $a_n \to \pi/2$ (47) divergent since $a_n \to e^2$
- (48) converges by the root test

(49)
$$\sim \frac{n}{n^2}$$
 so diverges

(50) converges by the ratio test – Use L'Hôpital's rule to show that $\frac{\ln(n^2 + 2n + 2)}{\ln(n^2 + 1)} \rightarrow 1.$

- (51) converges by the ratio test
- (52) difference of convergent geometric series
- (53) compare to $\frac{1}{n \ln^2 n}$. By the integral test this series converges, so both converge.
- (54) behaves like $\frac{1/n}{\sqrt{n}}$ since $\sin(1/n) \sim 1/n$ when n is large and $\cos(1/n) \approx 0$ when n is large.
- (55) $\sim \frac{e}{n^2+1}$ so converges.
- (56) converges by the ratio test (or the root test if you know that $n^{1/n}$ goes to 1 as n goes to infinity.)
- (57) converges by the ratio test