Problem	Possible score	Average score
1	12	9.5
2	12	4.9
3	12	8.9
4	12	5.4
5	12	7.5
6	12	8.1
7	12	6.8
8	6	4.8
9	10	4.3
Total	100	60.2

1. (12 points) Find $\int \frac{\sin ^{3}(\ln x) \cos ^{2}(\ln x)}{x} d x$.

Let $u=\ln x$. Then the integral becomes

$$
\int \sin ^{3} u \cos ^{2} u d u=\int \sin ^{2} u \cos ^{2} u \sin u d u=\int\left(1-\cos ^{2} u\right) \cos ^{2} u \sin u d u
$$

Substitute $t=\cos u$ to get

$$
-\int\left(1-t^{2}\right) t^{2} d t=\int\left(t^{4}-t^{2}\right) d t=\frac{t^{5}}{5}-\frac{t^{3}}{3}+C=\frac{\cos ^{5}(\ln x)}{5}-\frac{\cos ^{3}(\ln x)}{3}+C
$$

2. (12 points) Find $\int \frac{\ln \left(x^{2}+x+1\right)}{x^{2}} d x$.

Do integration by parts with $u=\ln \left(x^{2}+x+1\right)$ and $d v=d x / x^{2}$. Then $d u=(2 x+1) d x /\left(x^{2}+x+1\right)$ and $v=-1 / x$. So

$$
\int \frac{\ln \left(x^{2}+x+1\right)}{x^{2}} d x=-\frac{1}{x} \ln \left(x^{2}+x+1\right)+\int \frac{2 x+1}{x\left(x^{2}+x+1\right)}
$$

Now use partial fractions to compute the integral on the right.

$$
\frac{2 x+1}{x\left(x^{2}+x+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+x+1}=\frac{A x^{2}+A x+A+B x^{2}+C x}{x\left(x^{2}+x+1\right)}
$$

This leads to $0=A+B, 2=A+C, 1=A$ and we conclude that $B=-1$ and $C=1$. So now we have

$$
\int \frac{2 x+1}{x\left(x^{2}+x+1\right)} d x=\int \frac{d x}{x}+\int \frac{1-x}{x^{2}+x+1} d x=\ln |x|+\int \frac{1-x}{(x+1 / 2)^{2}+3 / 4} d x
$$

In this integral we make the substitution $u=x+1 / 2$ and then $-u+3 / 2=-x+1$. So we get

$$
\begin{aligned}
\ln |x|+\int \frac{1-x}{(x+1 / 2)^{2}+3 / 4} d x & =\ln |x|-\frac{1}{2} \int \frac{2 u}{u^{2}+3 / 4} d u+\frac{3}{2} \int \frac{d u}{u^{2}+3 / 4} \\
& =\ln |x|-\frac{1}{2} \ln \left(u^{2}+3 / 4\right)+\frac{2}{\sqrt{3}} \frac{3}{2} \arctan \left(\frac{2 u}{\sqrt{3}}\right)+C
\end{aligned}
$$

Returning to the original variable x and combining all the pieces gives

$$
-\frac{1}{x} \ln \left(x^{2}+x+1\right)+\ln |x|-\frac{1}{2} \ln \left(x^{2}+x+1\right)+\sqrt{3} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)+C
$$

3. (12 points) Find $\int e^{3 x} \arctan \left(e^{x}\right) d x$.

Start with a substitution $w=e^{x}$. Then $d w=e^{x} d x$. We get

$$
\int w^{3} \arctan (w) \frac{d w}{w}=\int w^{2} \arctan (w) d w
$$

Now do integration by parts, with $u=\arctan w$ and $d v=w^{2} d w$. So $d u=d w /\left(1+w^{2}\right)$ and $v=w^{3} / 3$. Thus our integral becomes

$$
\frac{w^{3}}{3} \arctan (w)-\frac{1}{3} \int \frac{w^{3}}{1+w^{2}} d w
$$

Long division gives $w^{3} /\left(1+w^{2}\right)=w-w /\left(1+w^{2}\right)$ so we have

$$
\frac{w^{3}}{3} \arctan (w)-\frac{1}{3} \frac{w^{2}}{2}+\frac{1}{3} \frac{1}{2} \ln \left(1+w^{2}\right)+C=\frac{e^{3 x} \arctan \left(e^{x}\right)}{3}-\frac{e^{2 x}}{6}+\frac{\ln \left(1+e^{2 x}\right)}{6}+C
$$

4. (12 points) Find $\int_{0}^{2} \frac{d x}{\sqrt{x^{2}+4 x}}$.

Complete the square: $x^{2}+4 x=(x+2)^{2}-4$ and make the substitution $u=x+2$ to get

$$
\int_{0}^{2} \frac{d x}{\sqrt{x^{2}+4 x}}=\int_{2}^{4} \frac{d u}{\sqrt{u^{2}-4}}
$$

Now make the substitution $u=2 \sec \theta$. The integral becomes

$$
\int_{0}^{\pi / 3} \sec \theta d \theta
$$

since $d u=2 \sec \theta \tan \theta d \theta, u^{2}-4=4 \tan ^{2} \theta$. In addition $u=2$ corresponds to $\sec \theta=1$ or $\theta=0$ and $u=4$ corresponds to $\sec \theta=2$ or $\cos \theta=1 / 2$ or $\theta=\pi / 3$.
Continuing the integration

$$
\int_{0}^{\pi / 3} \sec \theta d \theta=\left.\ln |\sec \theta+\tan \theta|\right|_{0} ^{\pi / 3}=\ln |2+\sqrt{3}|-\ln |1+0|=\ln |2+\sqrt{3}|
$$

5. (12 points) Find $\int \sin ^{2} \theta \cos 3 \theta d \theta$.

Replace $\sin ^{2} \theta$ by $(1-\cos 2 \theta) / 2$ to get

$$
\frac{1}{2} \int \cos 3 \theta d \theta-\frac{1}{2} \int \cos 2 \theta \cos 3 \theta d \theta=\frac{1}{2} \frac{\sin 3 \theta}{3}-\frac{1}{2} \int \cos 2 \theta \cos 3 \theta d \theta
$$

Either using the formulas in the text or using the addition formula for cosine we find that

$$
\cos 2 \theta \cos 3 \theta=\frac{1}{2}(\cos 5 \theta+\cos \theta)
$$

Thus

$$
\frac{1}{2} \int \cos 2 \theta \cos 3 \theta d \theta=\frac{1}{4} \int(\cos 5 \theta+\cos \theta) d \theta=\frac{\sin 5 \theta}{20}+\frac{\sin \theta}{4}+C
$$

Putting all the pieces together our answer is

$$
\frac{\sin 3 \theta}{6}-\frac{\sin 5 \theta}{20}-\frac{\sin \theta}{4}+C
$$

6. (12 points) Set up an integral for the area of the region enclosed between the curve $y=x^{3}-2$ and its tangent line at $x=-1$. JUST SET UP THE INTEGRAL. DO NOT COMPUTE A NUMERICAL VALUE.
First we have to find the tangent line at the point $(-1,-3)$ on the cubic curve. The slope is $d y / d x=3 x^{2}$ evaluated when $x=-1$. So the slope is 3 . The line of slope 3 through the point $(-1,-3)$ turns out to be the line $y=3 x$.
If we sketch the graphs, it is clear that the tangent line lies above the cubic. So our top curve is $y=3 x$ and the bottom curve will be $y=x^{3}-2$. We need to find the points where the tangent and the cubic intersect. Of course one intersection is at $x=-1$. To find the other one we set the two curves equal, and using the fact that $x=-1$ is a root we know that $x+1$ should be a factor of the cubic equation we get. Long division then lets us find the other root.

$$
x^{3}-2=3 x \Rightarrow x^{3}-3 x-2=0 \Rightarrow(x+1)\left(x^{2}-x-2\right)=0 \Rightarrow(x+1)(x+1)(x-2)=0
$$

So the other intersection is at $x=2$. So the integral we want is

$$
\int_{-1}^{2}\left(3 x-x^{3}+2\right) d x
$$

7. (12 points) The region R is bounded by the curves $y=\ln x, y=0$ and $x=e$. The solid S is obtained by revolving R around the y-axis.
(a) Set up an integral for the volume of S using the shell method.

We slice the region vertically as x runs from 1 where the graph of $y=\ln x$ crosses the x-axis up to $x=e$, a given boundary curve for the region. The slice at x has length $\ln x$. We rotate about the y axis, so the radius is x. Thus

$$
V=\int_{1}^{e} 2 \pi x \ln x d x
$$

(b) Set up an integral for the volume of S using the disk or washer method.

Now we have to slice horizontally. The slice at height y runs from the graph of $y=\ln x$ to the vertical line $x=e$. This horizontal slice will generate a washer. The outer radius will be e and the inner radius (the radius of the hole in the center) will be $x=e^{y}$. We slice as y runs from 0 to 1 . So our integral is

$$
V=\pi \int_{0}^{1}\left(e^{2}-\left(e^{y}\right)^{2}\right) d y=\pi \int_{0}^{1}\left(e^{2}-e^{2 y}\right) d y
$$

(c) Compute the volume of S. If we use the shell integral we compute using integration by parts.

$$
\int x \ln x d x=\frac{x^{2} \ln x}{2}-\int \frac{x}{2} d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+C .
$$

Evaluating between 1 and e we eventually get

$$
\pi \cdot \frac{e^{2}+1}{2}
$$

using the fact that $\ln e=1$ and $\ln 1=0$.
8. (6 points) Sketch the curve given in polar coordinates by $r=1+\sin \theta$.

As θ runs from 0 to $\pi / 2$ we move through the first quadrant in a counterclockwise direction and r increases steadily from 1 to 2 . As we move through the second quadrant, r decreases in a completely symmetric fashion from 2 back to 1 . As we swing through the third quadrant, the r values continue to steadily decrease, reaching the value 0 as θ reaches $3 \pi / 2$. So the curve curls into the origin, tangent to the the $\theta=3 \pi / 2$ ray (the negative y-axis). In a symmetric way, as we swing through the fourth quadrant, the r values increase from 0 to 1 , so the curve comes out of the origin, again tangent to the negative y-axis.
The resulting curve is a cardioid that crosses the positive x-axis at 1 , the positive y-axis at 2 , the negative x-axis at -1 and has a cusp at the origin, centered on the negative y-axis.
9. (10 points) Find the length of the curve $y=\frac{e^{x}+e^{-x}}{2}$ as x runs from 0 to 1 .

Parametrize the curve as $(x, y)=\left(t, \frac{e^{t}+e^{-t}}{2}\right)$.

$$
\frac{d x}{d t}=1 \quad \frac{d y}{d t}=\frac{e^{t}-e^{-t}}{2}
$$

So we need to compute $1+(d y / d t)^{2}$:

$$
1+\left(\frac{e^{t}-e^{-t}}{2}\right)^{2}=1+\frac{e^{2 t}-2+e^{-2 t}}{4}=\frac{e^{2 t}+2+e^{-2 t}}{4}=\frac{\left(e^{t}+e^{-t}\right)^{2}}{4}
$$

Thus the speed is

$$
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\frac{e^{t}+e^{-t}}{2}
$$

So the arclength is

$$
\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{1} \frac{e^{t}+e^{-t}}{2} d t=\left.\frac{e^{t}-e^{-t}}{2}\right|_{0} ^{1}=\frac{e-1 / e}{2}-\frac{1-1}{2}=\frac{e-1 / e}{2}
$$

