Name \qquad
\qquad
\qquad
MATH 104 - MIDTERM EXAM
Thursday March 13, 2003, 7:30PM-9:00PM
McDonnell A02

This examination booklet contains 9 problems on 10 sheets of paper including the front cover. Do all of your work in this booklet and show all your computations. This is a closed book exam.
Calculators are NOT allowed. This exam was designed so that all problems could be solved without heavy computations.

Problem	Possible score	Your score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	6	
9	10	
Total	100	

WRITE OUT AND SIGN PLEDGE:
I pledge my honor that I have not violated the Honor Code during this examination.

1. (12 points) Find $\int \frac{\sin ^{3}(\ln x) \cos ^{2}(\ln x)}{x} d x$.
2. (12 points) Find $\int \frac{\ln \left(x^{2}+x+1\right)}{x^{2}} d x$.
3. (12 points) Find $\int e^{3 x} \arctan \left(e^{x}\right) d x$.
4. (12 points) Find $\int_{0}^{2} \frac{d x}{\sqrt{x^{2}+4 x}}$.
5. (12 points) Find $\int \sin ^{2} \theta \cos 3 \theta d \theta$.
6. (12 points) Set up an integral for the area of the region enclosed between the curve $y=x^{3}-2$ and its tangent line at $x=-1$. JUST SET UP THE INTEGRAL. DO NOT COMPUTE A NUMERICAL VALUE.
7. (12 points) The region R is bounded by the curves $y=\ln x, y=0$ and $x=e$. The solid S is obtained by revolving R around the y-axis.
(a) Set up an integral for the volume of S using the shell method.
(b) Set up an integral for the volume of S using the disk or washer method.
(c) Compute the volume of S.
8. (6 points) Sketch the curve given in polar coordinates by $r=1+\sin \theta$.
9. (10 points) Find the length of the curve $y=\frac{e^{x}+e^{-x}}{2}$ as x runs from 0 to 1 .
