Mat104 Fall 2002, Improper Integrals From Old Exams

For the following integrals, state whether they are convergent or divergent, and give your reasons.
(1) $\int_{0}^{\infty} \frac{d x}{x^{3}+2}$ converges. Break it up as $\int_{0}^{1} \frac{d x}{x^{3}+2}+\int_{1}^{\infty} \frac{d x}{x^{3}+2}$. The first of these is proper and finite. The second behaves like the integral of $1 / x^{3}$ on $[1, \infty)$ and thus converges.
(2) $\int_{0}^{1} \frac{d x}{x+\sqrt{x}}$ converges. As $x \rightarrow 0, \sqrt{x}$ goes to 0 much more slowly than x does. (Think about the graphs.) Therefore when x is very close to 0 , the denominator $x+\sqrt{x} \approx \sqrt{x}$. So this integral will behave like the integral of $1 / \sqrt{x}$ on $[0,1]$, and this integral converges.
(3) $\int_{1}^{\infty} \frac{\sqrt{1+x}}{x^{3}}$ converges. As x goes to ∞, the integrand behaves like $\frac{\sqrt{x}}{x^{3}}=\frac{1}{x^{5 / 2}}$.
(4) $\int_{0}^{\infty} \frac{x^{2}}{x^{3}+1} d x$ diverges. Break it up into two integrals $\int_{0}^{1} \frac{x^{2}}{x^{3}+1} d x+\int_{1}^{\infty} \frac{x^{2}}{x^{3}+1} d x$. The first integral is proper and finite. The second can be compared to the integral of $1 / x$ on $[1, \infty)$ which diverges.
(5) $\int_{0}^{1} \ln x d x$ converges to -1 . Here we can compute directly since integration by parts tells us that $\int \ln x d x=x \ln x-x+C$. Evaluating at the $x=1$ endpoint gives $\ln 1-1=-1$. For the other endpoint we have to take the limit as x goes to 0 . For this we need L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} x \ln x=\lim _{x \rightarrow 0} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0}-x=0
$$

So evaluating at the $x=0$ endpoint gives 0 .
(6) $\int_{0}^{1} \frac{d x}{e^{x}-1}$ diverges. The only difficulty is that the denominator is 0 when $x=0$. There are a couple of approaches we could take. The easiest is to use the Taylor series for e^{x}. Then we know that $e^{x}-1=x+$ higher powers of x and as x goes to zero, the higher powers of x will vanish much more rapidly. So this function behaves essentially like $1 / x$ when x is close to 0 . Since $\int d x / x$ diverges, this integral will also.

Alternatively, we could compute the integral, making the substitution $u=e^{x}$ and then use partial fractions.
(7) $\int_{0}^{\infty} \frac{d x}{x^{2}+2 x+2}$ converges. The only difficulty is that we have an infinite endpoint. The integrand is asymptotic to $1 / x^{2}$ as x goes to infinity. Since $\int_{1}^{\infty} d x / x^{2}$ converges, this integral will as well. (To compare these we should break up the integral. First integrate from 0 to 1 , which gives a finite value. Then integrate further from 1 out to ∞. This gives a finite value as well by comparison to $1 / x^{2}$.)
(8) $\int_{1}^{\infty} \frac{x^{3}}{\ln x+x^{4}} d x$ diverges. Again the only problem is that we have an infinite endpoint. As x goes to infinity, x^{4} grows much faster than $\ln x$. Thus the integrand will be asymptotic to $x^{3} / x^{4}=1 / x$ as x goes to infinity.
(9) $\int_{0}^{\infty} \frac{d x}{x^{3}+\sqrt{x}}$ converges. Break it up into an integral from 0 to 1 plus the integral from 1 to ∞. When x is close to 0 , the integrand will behave like $1 / \sqrt{x}$ since x^{3} goes to 0 much more rapidly than \sqrt{x} does. Since the integral of $1 / \sqrt{x}$ on $[0,1]$ converges, so will $1 /\left(x^{3}+\sqrt{x}\right)$.

As x goes to infinity, \sqrt{x} grows much more slowly than x^{3}, so $1 /\left(x^{3}+\sqrt{x}\right) \approx 1 / x^{3}$ when x is very large. Since the integral of $1 / x^{3}$ on $[1, \infty)$ is converges, so will the integral of $1 /\left(x^{3}+\sqrt{x}\right)$ on $[1, \infty)$.
(10) $\int_{0}^{1} \frac{d x}{1-\cos x}$ diverges. Here the easiest method is to use the Taylor series for $\cos x$. It tells us that $1-\cos x=x^{2} / 2+$ higher powers of x. Since the higher powers of x die out more rapidly when x is close to $0,1 /(1-\cos x)$ behaves like $2 / x^{2}$ as x goes to 0 . Therefore the given integral will behave like the integral of $2 / x^{2}$ on $[0,1]$ and this integral diverges.
(11) $\int_{0}^{\infty} e^{-x} \cos x d x$ converges. We could use integration by parts twice to compute the integral and then take limits. On the other hand, since e^{-x} dies out more rapidly than any power of x, we can conclude that $e^{-x}<\frac{1}{x^{2}}$ once x gets big enough, say, when $x>1$ (Check it graphically). So

$$
e^{-x} \cos x<\frac{\cos x}{x^{2}}<\frac{1}{x^{2}}
$$

Since the integral of $1 / x^{2}$ on $[1, \infty)$ converges, so will the integral of $e^{-x} \cos x$ on $[1, \infty)$. Since there is no problem with our function on $[0,1]$, the given integral converges.
(12) $\int_{0}^{\infty} \frac{e^{-x^{2}}}{x^{2}} d x$ diverges. We have to split it up and think about what happens as we approach 0 and what happens as we approach infinity separately. To think about what is happening at the 0 endpoint, we notice that the numerator goes to 1 . So $e^{-x^{2}} / x^{2} \sim 1 / x^{2}$ as x goes to zero. Since the integral of $1 / x^{2}$ on $[0,1]$ diverges, so will the integral of $e^{-x^{2}} / x^{2}$. (Remark: The integral of this function on $[1, \infty)$ will converge - again because the exponential dies out very very rapidly.)
(13) $\int_{0}^{\infty} \frac{x^{2}+10}{3 x^{5}+6 x+8} d x$ converges. The only problem is that we have an infinite endpoint. SInce the integrand is asymptotic to $1 / x^{3}$ the integral will converge.
(14) $\int_{0}^{\infty} \frac{x^{4}+3 x+1}{x^{5}+2 x^{2}+3} d x$ diverges. The only problem is that we have an infinite endpoint. The integrand is asymptotic to $1 / x$ so the integral diverges.
(15) $\int_{0}^{1} \frac{e^{x}}{x} d x$ diverges. The only issue is what happens at 0 . Since the numerator approaches 1 this function will behave like $1 / x$ as x goes to zero.
(16) $\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x$ converges. Again the only issue is what happens as we approach 0 . Since $\sin x \approx x$ when x is close to zero, we see that the integrand behaves like $x / \sqrt{x}=\sqrt{x}$.
(17) $\int_{0}^{1} \frac{d x}{x^{2}+\sqrt{x}}$ converges. As x goes to zero, \sqrt{x} dominates. (the other term dies out much faster) So this integral behaves like $1 / \sqrt{x}$ near zero.
(18) $\int_{0}^{1}(1-x)^{-2 / 3} d x$ converges. Compute directly.
(19) $\int_{2}^{\infty} \frac{x^{2}+4 x+4}{(\sqrt{x}-1)^{3} \cdot \sqrt{x^{3}-1}} d x$ diverges. The only issue is that we have an infinite endpoint. As x goes to infinity, the highest powers of x will dominate. So the integrand will behave like $x^{2} /\left(x^{3 / 2} \cdot x^{3 / 2}\right)=x^{2} / x^{3}=1 / x$.
(20) $\int_{0}^{\pi / 2} \tan x d x$ diverges. Compute directly, using the substitution $y=\cos x$.
(21) $\int_{0}^{\infty} \frac{e^{x}-1}{e^{2 x}+1} d x$ converges. The only issue is the infinite endpoint. When x is large the integrand will behave like $e^{x} / e^{2 x}=1 / e^{x}$. Compute directly or use the fact that e^{x} grows faster than any power of x so $1 / e^{x}$ dies out faster than any power of x.
(22) $\int_{2}^{\infty} \frac{\sin x}{x^{2}-1} d x$ converges. Compare to $1 / x^{2}$.
(23) $\int_{1}^{\infty} \frac{\sin \sqrt{x}}{x+x^{4}} d x$ converges. Compare to $1 /\left(x+x^{4}\right)$ and then to $1 / x^{4}$.
(24) $\int_{0}^{1} \frac{\sin \sqrt{x}}{x+x^{4}} d x$ converges. When x is small the numerator will be well-approximated by \sqrt{x} and the denominator will be well-approximated by x. So the integrand behaves like $1 / \sqrt{x}$ when x goes to zero.
(25) $\int_{0}^{2} \frac{d x}{|x-1|}$ diverges. This is the same as integrating $1 /(1-x)$ which behaves like integrating $1 / x$.
(26) $\int_{1}^{\infty} \frac{d x}{x^{0.99}}$ diverges. Compute directly or use the p-test.
(27) $\int_{0}^{\infty} \frac{d x}{x^{4}+x^{2 / 3}} d x$ converges. Near 0 the integrand behaves like $1 / x^{2 / 3}$ which gives a convergent integral on $[0,1]$. When x is large the integrand behaves like $1 / x^{4}$ which gives a convergent integral on $[1, \infty)$.
(28) $\int_{0}^{\infty} x^{3} e^{-x} d x$ converges. Compute directly (a pain) or use the fact that the exponential dies out faster than any power of x, say faster than x^{-5}. This allows you to compare the integral to that of $1 / x^{2}$ which gives convergence.
(29) $\int_{1}^{\infty} \frac{\ln x}{1+x^{2}} d x$ converges. Since $\ln x$ grows more slowly than any power of x we can say that $\ln x /\left(1+x^{2}\right)<\sqrt{x} /\left(1+x^{2}\right)$ when x is large enough. Since $\sqrt{x} /\left(1+x^{2}\right) \sim 1 / x^{3 / 2}$ we get convergence at the infinite endpoint, the only possible problem.
(30) $\int_{1}^{\infty} \frac{d x}{x^{2} \ln x}$ diverges. This integral has problems at both endpoints. This means we have to split the integration, say integrating first from 1 to 2 and then integrating again from 2
to ∞. To understand what is happening at $x=1$ we could make the substitution $x=u+1$

$$
\int_{1}^{2} \frac{d x}{x^{2} \ln x}=\int_{0}^{2} \frac{d u}{(u-1)^{2} \ln (1+u)}
$$

and then use a known Taylor series to understand this integral. Since $\ln (1+u)=u-$ $u^{2} / 2+u^{3} / 3-\ldots$ we see that the denominator $\left(1-2 u+u^{2}\right)\left(u-u^{2} / 2+u^{3} / 3-\ldots\right)$ is of the form $u+$ higher powers of u. So the integrand behaves like $1 / u$ as u goes to zero, and therefore this integral (as well as the original integral) diverges.

While we're here let me say that the other integral, as x runs from 2 to ∞ converges. To see this, observe that $x^{2} \ln x>x^{2}$ and thus $1 /\left(x^{2} \ln x\right)<1 / x^{2}$. By comparison $\int_{2}^{\infty} \frac{d x}{x^{2} \ln x}$ converges.
(31) $\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\sin x}}$ converges. The only problem is the $x=0$ endpoint. When x is small, $\sin x \approx x$, so this integral behaves like that of $1 / \sqrt{x}$ and converges.
(32) $\int_{0}^{\infty} e^{x}\left(1+e^{-2 x}\right) d x$ diverges. Multiplying out the integrand we get $\int_{0}^{\infty} e^{x} d x+\int_{0}^{\infty} e^{-x} d x$ The second integral here is finite, and the first is infinite since e^{x} goes to infinity as x does.
(33) $\int_{0}^{1} \sqrt{x} \ln x d x$ converges. Compute directly using integration by parts and take the limit using L'Hôpital's Rule.
(34) $\int_{2}^{\infty} \frac{d x}{x^{3}-1}$ converges. The only problem is the infinite endpoint. The integrand is asymptotic to $1 / x^{3}$ as x goes to infinity.
(35) $\int_{0}^{\pi / 2} \frac{1+\cos x}{x} d x$ diverges. The only problem here is that denominator vanishes at $x=0$. Since the numerator approaches 2 as x goes to 0 , the integrand behaves like $2 / x$ when x goes to 0 .
(36) $\int_{1}^{\infty} \frac{\ln x \cdot \cos x}{x^{2}+1} d x$ converges. Here the only problem is the infinite endpoint.

$$
\frac{\ln x \cdot \cos x}{x^{2}+1} \leq \frac{\ln x}{x^{2}+1}<\frac{\sqrt{x}}{x^{2}+1} \sim \frac{1}{x^{3 / 2}}
$$

since $\ln x$ grows more slowly than any power of x.
(37) $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$ converges. When x is close to zero, then \sqrt{x} dominates. That is $\frac{1}{(1+x) \sqrt{x}} \sim$ $\frac{1}{\sqrt{x}}$ as $x \rightarrow 0$. When x is very large, then $x \sqrt{x}=x^{3 / 2}$ dominates $-\frac{1}{(1+x) \sqrt{x}} \sim \frac{1}{x^{3 / 2}}$.
(38) $\int_{1}^{\infty} \frac{d x}{\sqrt{1+x^{4}}}$ converges. $\frac{d x}{\sqrt{1+x^{4}}} \sim \frac{1}{x^{2}}$ as $x \rightarrow \infty$.
(39) $\int_{0}^{\infty} \frac{d x}{\sqrt[3]{x}+x^{2}}$ converges. When x is close to $0, \sqrt[3]{x}$ dominates. When x is very large, x^{2} dominates.

Other problems involving improper integrals

(1) Find the arc length of the curve given by $x=e^{-t} \cos t$ and $y=e^{-t} \sin t$ for $0 \leq t<\infty$.

$$
\begin{aligned}
\frac{d x}{d t} & =-e^{-t} \sin t-e^{-t} \cos t \\
\frac{d y}{d t} & =e^{-t} \cos t-e^{-t} \sin t \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =\cdots=2 e^{-2 t}
\end{aligned}
$$

So the arc length is given by the improper integral

$$
\int_{0}^{\infty} \sqrt{2} e^{-t} d t=\sqrt{2}
$$

(2) Find $\int_{0}^{\infty} t e^{-t} d t$ or show that it diverges. Use integration by parts to show that $\int t e^{-t} d t=$ $-t e^{-t}-e^{-t}$ and then $\int_{0}^{\infty} t e^{-t} d t=1$.
(3) Evaluate $\int_{1}^{\sqrt{e}} \frac{\arcsin (\ln x)}{x} d x$. Make the substitution $w=\ln x$ and the integral becomes

$$
\int_{1}^{\sqrt{e}} \frac{\arcsin (\ln x)}{x} d x=\int_{0}^{1 / 2} \arcsin (w) d w
$$

Using integration by parts with $u=\arcsin w$ and $d v=d w$ we find that

$$
\int \arcsin w d w=w \arcsin w+\sqrt{1-w^{2}}
$$

and the definite integral works out to be $\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1$.
(4) Evaluate $\int_{1}^{\infty} \frac{d x}{x^{2}+1}$. Here we get $\lim _{t \rightarrow \infty} \arctan t-\arctan 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$.

