
Mat104 Fall 2002, Improper Integrals From Old Exams

For the following integrals, state whether they are convergent or divergent, and give your reasons.

(1)

∫ ∞

0

dx

x3 + 2
converges. Break it up as

∫ 1

0

dx

x3 + 2
+

∫ ∞

1

dx

x3 + 2
. The first of these is proper

and finite. The second behaves like the integral of 1/x3 on [1,∞) and thus converges.

(2)

∫ 1

0

dx

x +
√

x
converges. As x → 0,

√
x goes to 0 much more slowly than x does. (Think

about the graphs.) Therefore when x is very close to 0, the denominator x +
√

x ≈
√

x.
So this integral will behave like the integral of 1/

√
x on [0, 1], and this integral converges.

(3)

∫ ∞

1

√
1 + x

x3
converges. As x goes to ∞, the integrand behaves like

√
x

x3
=

1

x5/2
.

(4)

∫ ∞

0

x2

x3 + 1
dx diverges. Break it up into two integrals

∫ 1

0

x2

x3 + 1
dx +

∫ ∞

1

x2

x3 + 1
dx. The

first integral is proper and finite. The second can be compared to the integral of 1/x on
[1,∞) which diverges.

(5)

∫ 1

0

ln x dx converges to −1. Here we can compute directly since integration by parts tells

us that

∫
ln x dx = x ln x− x + C. Evaluating at the x = 1 endpoint gives ln 1− 1 = −1.

For the other endpoint we have to take the limit as x goes to 0. For this we need L’Hôpital’s
rule.

lim
x→0

x ln x = lim
x→0

ln x

1/x
= lim

x→0

1/x

−1/x2
= lim

x→0
−x = 0.

So evaluating at the x = 0 endpoint gives 0.

(6)

∫ 1

0

dx

ex − 1
diverges. The only difficulty is that the denominator is 0 when x = 0. There are

a couple of approaches we could take. The easiest is to use the Taylor series for ex. Then
we know that ex − 1 = x + higher powers of x and as x goes to zero, the higher powers of
x will vanish much more rapidly. So this function behaves essentially like 1/x when x is

close to 0. Since

∫
dx/x diverges, this integral will also.

Alternatively, we could compute the integral, making the substitution u = ex and then
use partial fractions.

(7)

∫ ∞

0

dx

x2 + 2x + 2
converges. The only difficulty is that we have an infinite endpoint. The

integrand is asymptotic to 1/x2 as x goes to infinity. Since

∫ ∞

1

dx/x2 converges, this

integral will as well. (To compare these we should break up the integral. First integrate
from 0 to 1, which gives a finite value. Then integrate further from 1 out to ∞. This gives
a finite value as well by comparison to 1/x2.)

(8)

∫ ∞

1

x3

ln x + x4
dx diverges. Again the only problem is that we have an infinite endpoint. As

x goes to infinity, x4 grows much faster than ln x. Thus the integrand will be asymptotic
to x3/x4 = 1/x as x goes to infinity.
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(9)

∫ ∞

0

dx

x3 +
√

x
converges. Break it up into an integral from 0 to 1 plus the integral from 1 to

∞. When x is close to 0, the integrand will behave like 1/
√

x since x3 goes to 0 much more
rapidly than

√
x does. Since the integral of 1/

√
x on [0, 1] converges, so will 1/(x3 +

√
x).

As x goes to infinity,
√

x grows much more slowly than x3, so 1/(x3 +
√

x) ≈ 1/x3 when
x is very large. Since the integral of 1/x3 on [1,∞) is converges, so will the integral of
1/(x3 +

√
x) on [1,∞).

(10)

∫ 1

0

dx

1− cos x
diverges. Here the easiest method is to use the Taylor series for cos x. It tells

us that 1 − cos x = x2/2 + higher powers of x. Since the higher powers of x die out more
rapidly when x is close to 0, 1/(1− cos x) behaves like 2/x2 as x goes to 0. Therefore the
given integral will behave like the integral of 2/x2 on [0, 1] and this integral diverges.

(11)

∫ ∞

0

e−x cos x dx converges. We could use integration by parts twice to compute the integral

and then take limits. On the other hand, since e−x dies out more rapidly than any power

of x, we can conclude that e−x <
1

x2
once x gets big enough, say, when x > 1 (Check it

graphically). So

e−x cos x <
cos x

x2
<

1

x2

Since the integral of 1/x2 on [1,∞) converges, so will the integral of e−x cos x on [1,∞).
Since there is no problem with our function on [0, 1], the given integral converges.

(12)

∫ ∞

0

e−x2

x2
dx diverges. We have to split it up and think about what happens as we approach

0 and what happens as we approach infinity separately. To think about what is happening
at the 0 endpoint, we notice that the numerator goes to 1. So e−x2

/x2 ∼ 1/x2 as x goes to

zero. Since the integral of 1/x2 on [0, 1] diverges, so will the integral of e−x2
/x2. (Remark:

The integral of this function on [1,∞) will converge – again because the exponential dies
out very very rapidly.)

(13)

∫ ∞

0

x2 + 10

3x5 + 6x + 8
dx converges. The only problem is that we have an infinite endpoint.

SInce the integrand is asymptotic to 1/x3 the integral will converge.

(14)

∫ ∞

0

x4 + 3x + 1

x5 + 2x2 + 3
dx diverges. The only problem is that we have an infinite endpoint. The

integrand is asymptotic to 1/x so the integral diverges.

(15)

∫ 1

0

ex

x
dx diverges. The only issue is what happens at 0. Since the numerator approaches

1 this function will behave like 1/x as x goes to zero.

(16)

∫ 1

0

sin x√
x

dx converges. Again the only issue is what happens as we approach 0. Since

sin x ≈ x when x is close to zero, we see that the integrand behaves like x/
√

x =
√

x.

(17)

∫ 1

0

dx

x2 +
√

x
converges. As x goes to zero,

√
x dominates. (the other term dies out much

faster) So this integral behaves like 1/
√

x near zero.
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(18)

∫ 1

0

(1− x)−2/3 dx converges. Compute directly.

(19)

∫ ∞

2

x2 + 4x + 4

(
√

x− 1)3 ·
√

x3 − 1
dx diverges. The only issue is that we have an infinite endpoint.

As x goes to infinity, the highest powers of x will dominate. So the integrand will behave
like x2/(x3/2 · x3/2) = x2/x3 = 1/x.

(20)

∫ π/2

0

tan x dx diverges. Compute directly, using the substitution y = cos x.

(21)

∫ ∞

0

ex − 1

e2x + 1
dx converges. The only issue is the infinite endpoint. When x is large the

integrand will behave like ex/e2x = 1/ex. Compute directly or use the fact that ex grows
faster than any power of x so 1/ex dies out faster than any power of x.

(22)

∫ ∞

2

sin x

x2 − 1
dx converges. Compare to 1/x2.

(23)

∫ ∞

1

sin
√

x

x + x4
dx converges. Compare to 1/(x + x4) and then to 1/x4.

(24)

∫ 1

0

sin
√

x

x + x4
dx converges. When x is small the numerator will be well-approximated by

√
x

and the denominator will be well-approximated by x. So the integrand behaves like 1/
√

x
when x goes to zero.

(25)

∫ 2

0

dx

|x− 1|
diverges. This is the same as integrating 1/(1−x) which behaves like integrating

1/x.

(26)

∫ ∞

1

dx

x0.99
diverges. Compute directly or use the p-test.

(27)

∫ ∞

0

dx

x4 + x2/3
dx converges. Near 0 the integrand behaves like 1/x2/3 which gives a con-

vergent integral on [0, 1]. When x is large the integrand behaves like 1/x4 which gives a
convergent integral on [1,∞).

(28)

∫ ∞

0

x3 e−x dx converges. Compute directly (a pain) or use the fact that the exponential

dies out faster than any power of x, say faster than x−5. This allows you to compare the
integral to that of 1/x2 which gives convergence.

(29)

∫ ∞

1

ln x

1 + x2
dx converges. Since ln x grows more slowly than any power of x we can say

that ln x/(1 + x2) <
√

x/(1 + x2) when x is large enough. Since
√

x/(1 + x2) ∼ 1/x3/2 we
get convergence at the infinite endpoint, the only possible problem.

(30)

∫ ∞

1

dx

x2 ln x
diverges. This integral has problems at both endpoints. This means we have

to split the integration, say integrating first from 1 to 2 and then integrating again from 2
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to ∞. To understand what is happening at x = 1 we could make the substitution x = u+1∫ 2

1

dx

x2 ln x
=

∫ 2

0

du

(u− 1)2 ln(1 + u)

and then use a known Taylor series to understand this integral. Since ln(1 + u) = u −
u2/2 + u3/3− . . . we see that the denominator (1− 2u + u2)(u− u2/2 + u3/3− . . . ) is of
the form u + higher powers of u. So the integrand behaves like 1/u as u goes to zero, and
therefore this integral (as well as the original integral) diverges.

While we’re here let me say that the other integral, as x runs from 2 to∞ converges. To

see this, observe that x2 ln x > x2 and thus 1/(x2 ln x) < 1/x2. By comparison

∫ ∞

2

dx

x2 ln x
converges.

(31)

∫ π/2

0

dx√
sin x

converges. The only problem is the x = 0 endpoint. When x is small,

sin x ≈ x, so this integral behaves like that of 1/
√

x and converges.

(32)

∫ ∞

0

ex(1 + e−2x) dx diverges. Multiplying out the integrand we get

∫ ∞

0

ex dx +

∫ ∞

0

e−x dx

The second integral here is finite, and the first is infinite since ex goes to infinity as x does.

(33)

∫ 1

0

√
x ln x dx converges. Compute directly using integration by parts and take the limit

using L’Hôpital’s Rule.

(34)

∫ ∞

2

dx

x3 − 1
converges. The only problem is the infinite endpoint. The integrand is asymp-

totic to 1/x3 as x goes to infinity.

(35)

∫ π/2

0

1 + cos x

x
dx diverges. The only problem here is that denominator vanishes at x = 0.

Since the numerator approaches 2 as x goes to 0, the integrand behaves like 2/x when x
goes to 0.

(36)

∫ ∞

1

ln x · cos x

x2 + 1
dx converges. Here the only problem is the infinite endpoint.

ln x · cos x

x2 + 1
≤ ln x

x2 + 1
<

√
x

x2 + 1
∼ 1

x3/2

since ln x grows more slowly than any power of x.

(37)

∫ ∞

0

dx

(1 + x)
√

x
converges. When x is close to zero, then

√
x dominates. That is

1

(1 + x)
√

x
∼

1√
x

as x → 0. When x is very large, then x
√

x = x3/2 dominates –
1

(1 + x)
√

x
∼ 1

x3/2
.

(38)

∫ ∞

1

dx√
1 + x4

converges.
dx√

1 + x4
∼ 1

x2
as x →∞.

(39)

∫ ∞

0

dx
3
√

x + x2
converges. When x is close to 0, 3

√
x dominates. When x is very large, x2

dominates.
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Other problems involving improper integrals

(1) Find the arc length of the curve given by x = e−t cos t and y = e−t sin t for 0 ≤ t < ∞.

dx

dt
= −e−t sin t− e−t cos t

dy

dt
= e−t cos t− e−t sin t

(
dx

dt

)2

+

(
dy

dt

)2

= · · · = 2e−2t

So the arc length is given by the improper integral∫ ∞

0

√
2e−t dt =

√
2.

(2) Find

∫ ∞

0

te−t dt or show that it diverges. Use integration by parts to show that

∫
te−t dt =

−te−t − e−t and then

∫ ∞

0

te−t dt = 1.

(3) Evaluate

∫ √
e

1

arcsin(ln x)

x
dx. Make the substitution w = ln x and the integral becomes∫ √

e

1

arcsin(ln x)

x
dx =

∫ 1/2

0

arcsin(w) dw

Using integration by parts with u = arcsin w and dv = dw we find that∫
arcsin w dw = w arcsin w +

√
1− w2

and the definite integral works out to be
π

12
+

√
3

2
− 1.

(4) Evaluate

∫ ∞

1

dx

x2 + 1
. Here we get limt→∞ arctan t− arctan 1 =

π

2
− π

4
=

π

4
.


